Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018

4 settembre 2018

Lo studente che intende avvalersi del voto ottenuto alla prova intermedia svolga <u>solamente</u> gli esercizi n. 3 e n. 4. Il tempo a sua disposizione è di due ore.

Lo studente che non si avvale della prova intermedia svolga tutti e quattro gli esercizi. Il tempo a sua disposizione è di tre ore.

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Si risponda ai seguenti quesiti:

- (1a) Sia X uno spazio topologico, sia A un sottoinsieme aperto di X e sia D un sottoinsieme denso di X. Si dimostri che $\overline{A} = \overline{A \cap D}$, ove \overline{A} indica la chiusura di A in X e $\overline{A \cap D}$ indica la chiusura di $A \cap D$ in X.
 - Si fornisca un esempio di spazio topologico X, di sottoinsieme denso D di X e di sottoinsieme A di X tali che A non è aperto in X e $\overline{A} \neq \overline{A \cap D}$.
- (1b) Sia j la topologia su \mathbb{R} avente per base la seguente famiglia di intervalli:

$$\{[a,b) \in \mathcal{P}(\mathbb{R}) \mid a,b \in \mathbb{R}, a < b\}.$$

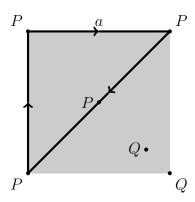
Si dimostri che i sottospazi topologici [0,1) e (0,1] di (\mathbb{R},j) non sono omeomorfi.

(1c) Sia j la topologia su \mathbb{R} definita nel precedente punto (1b) e sia (\mathbb{R}^2, η) il prodotto topologico di (\mathbb{R}, j) con se stesso. Si dimostri che η è strettamente più fine della topologia euclidea di \mathbb{R}^2 . Si dica inoltre se (\mathbb{R}^2, η) è di Hausdorff.

Esercizio 2. Sia \mathbb{R}^2 il piano dotato della topologia euclidea, sia L il sottospazio topologico $(-1,1)\times\{0,1\}$ di \mathbb{R}^2 e sia X lo spazio topologico quoziente di L ottenuto identificando i punti (x,0) e (x,1) per ogni $x\in(-1,1)\setminus\{0\}$. Indichiamo con $\pi:L\to X$ l'applicazione di passaggio al quoziente.

- (2a) Si dimostri che X è uno spazio topologico locamente euclideo che non soddisfa la condizione di Hausdorff. Si dimostri inoltre che π non è chiusa.
- (2b) Si dica se X è compatto e/o connesso.

Esercizio 3. Si consideri lo spazio topologico X ottenuto da un quadrato chiuso identificando i punti P tra di loro e i punti Q tra di loro come in figura. I lati non hanno identificazioni.



- (3a) Si calcolino i gruppi fondamentali di X e di $X \setminus \{Q\}$.
- (3b) Si stabilisca se X e $X \setminus \{Q\}$ sono spazi omeomorfi e/o omotopicamente equivalenti.
- (3c) Si dica se il cappio a è omotopo al cammino costante in P.

Esercizio 4. (4a) Sia $\gamma_r(t)=re^{it}$ la circonferenza di centro l'origine e raggio r. Si calcoli l'integrale di linea

$$I_r = \int_{\gamma_r} \frac{e^{\sin(z^2)}}{(z^2 + 1)(z - 2i)^3} dz.$$

per valori del raggio r nell'intervallo (0,2), differente da 1.

(4b) Si consideri l'equazione $z^4 - 3z + 1 = 0$. Quante radici ha nel disco unitario aperto?