An application of biregularity to quaternionic Lagrange interpolation

A. Perotti

Department of Mathematics
University of Trento, Italy

ICNAAM 2008

Complex and Hypercomplex Methods in Applications
Kos, Greece 2008

Fueter-regular functions

- $\mathbb{H} \simeq \mathbb{C}^{2}$:

$$
\begin{aligned}
& \mathbb{C}^{2} \ni z=\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right) \\
& \longleftrightarrow q=z_{1}+z_{2} j=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}
\end{aligned}
$$

- Ω bounded domain in \mathbb{H}. A quaternionic function $f=f_{1}+f_{2} j \in C^{1}(\Omega)$ is (left) regular on Ω if it is in the kernel of the Cauchy-Riemann-Fueter operator

$$
\mathcal{D}=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right)=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}} \quad \text { on } \Omega
$$

- Every (standard) holomorphic map $\left(f_{1}, f_{2}\right): \Omega \rightarrow \mathbb{C}^{2}$ defines a regular function $f=f_{1}+f_{2} j$
- Every holomorphic map w.r.t. the structure defined by left multiplication by j defines a regular function $\left(f_{1}^{\prime}, f_{2}^{\prime}\right): \Omega \rightarrow \mathbb{C}_{j}^{2}$ holomorphic $\Rightarrow f=f_{1}^{\prime}+f_{2}^{\prime} i$ regular

Fueter-regular functions

- $\mathbb{H} \simeq \mathbb{C}^{2}:$

$$
\begin{aligned}
& \mathbb{C}^{2} \ni z=\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right) \\
& \longleftrightarrow q=z_{1}+z_{2} j=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}
\end{aligned}
$$

- Ω bounded domain in \mathbb{H}. A quaternionic function $f=f_{1}+f_{2} j \in C^{1}(\Omega)$ is (left) regular on Ω if it is in the kernel of the Cauchy-Riemann-Fueter operator

$$
\mathcal{D}=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right)=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}} \quad \text { on } \Omega
$$

- The space $\mathcal{R}(\Omega)$ of regular functions on Ω is the smallest right \mathbb{H}-module defined by a $1^{\text {st }}$-order differential operator containing the (standard) holomorphic maps and also the holomorphic maps w.r.t. the complex structure given by left multiplication by j

Hypercomplex structure on \mathbb{H}

- Hypercomplex structure on $\mathbb{H} \simeq \mathbb{C}^{2}: J_{1}, J_{2}$ complex structures on $T \mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and j J_{1}^{*}, J_{2}^{*} dual structures on $T^{*} \mathbb{H}$. We make the choice $J_{3}^{*}=J_{1}^{*} J_{2}^{*} \Rightarrow J_{3}=-J_{1} J_{2}$
- We can rewrite the equations of regularity (Joyce 1998)

$$
\begin{array}{ll}
& d f+i J_{1}^{*}(d f)+j J_{2}^{*}(d f)+k J_{3}^{*}(d f)=0 \\
\text { or } \quad & d f^{0}=J_{1}^{*}\left(d f^{1}\right)+J_{2}^{*}\left(d f^{2}\right)+J_{3}^{*}\left(d f^{3}\right)
\end{array}
$$

or, in complex components $f=f_{1}+f_{2} j$,

$$
\bar{\partial} f_{1}=J_{2}^{*}\left(\partial \bar{f}_{2}\right)
$$

Holomorphic maps w.r.t. a complex structure J_{p}

Let $J_{p}=p_{1} J_{1}+p_{2} J_{2}+p_{3} J_{3}$ be the orthogonal complex structure on \mathbb{H} defined by $p=p_{1} i+p_{2} j+p_{3} k \in \mathbb{S}^{2}=\left\{p \in \mathbb{H} \mid p^{2}=-1\right\}$. Let $\mathbb{C}_{p}=\langle 1, p\rangle$ and L_{p} the complex structure defined by left multiplication by p. We have $L_{p}=J_{\gamma(p)}$, where $\gamma(p)=p_{1} i+p_{2} j-p_{3} k$. Consider J_{p}-holomorphic maps from $\left(\Omega, J_{p}\right)$ to $\left(\mathbb{H}, L_{p}\right)$

$$
\operatorname{Hol}_{p}(\Omega, \mathbb{H})=\left\{f: \Omega \rightarrow \mathbb{H} \mid \bar{\partial}_{p} f=0 \text { on } \Omega\right\}=\operatorname{Ker} \bar{\partial}_{p}
$$

where $\bar{\partial}_{p}$ is Cauchy-Riemann: $\bar{\partial}_{p}=\frac{1}{2}\left(d+p J_{p}^{*} \circ d\right)$
For any positive o.n. basis $\{1, p, q, p q\}$ of $\mathbb{H}\left(p, q \in \mathbb{S}^{2}\right)$, the equations of regularity can be rewritten as

$$
\bar{\partial}_{p} f_{1}=J_{q}^{*}\left(\partial_{p} \bar{f}_{2}\right)
$$

where $f=\left(f^{0}+p f^{1}\right)+\left(f^{2}+p f^{3}\right) q=f_{1}+f_{2} q$ are defined by the decomposition $\mathbb{H}=\mathbb{C}_{p} \oplus\left(\mathbb{C}_{p}\right) q$

$$
\Rightarrow \text { every } f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H}) \text { is a regular function on } \Omega \text {. }
$$

Totally regular functions

Definition (cf. totally analytic variables - Delanghe 1970)
A regular function $f \in \mathcal{R}(\Omega)$ is totally regular if the powers f^{k} are regular on Ω for every integer $k \geq 0$ and f^{k} is regular on $\Omega^{\prime}=\{x \in \Omega \mid f(x) \neq 0\}$ for every integer $k<0$.

Example

Every \mathbb{C}_{p}-valued function $f \in \operatorname{Hol} I_{p}(\Omega, \mathbb{H})$ is totally regular.
This follows from the isomorphism of commutative algebras

$$
\operatorname{Hol}_{p}\left(\Omega, \mathbb{C}_{p}\right) \stackrel{\phi_{a}}{=} \operatorname{Hol}\left(\Omega^{a}, \mathbb{C}\right)
$$

defined by composition with 3D-rotations $\operatorname{rot}_{a}(q)=a q a^{-1}$ and $\operatorname{rot}_{\gamma(a)}$ with $\operatorname{rot}_{a}(i)=\gamma(p)$ and $\Omega^{a}=a^{-1} \Omega a$:

$$
\phi_{a}(f)=f^{a}:=\operatorname{rot}_{\gamma(a)} \circ f \circ r o t_{a}
$$

Totally regular functions

Remark

When $f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H})$ is not \mathbb{C}_{p}-valued, the decomposition $f=f_{1}+f_{2} q$ w.r.t. any orthonormal basis $\{p, q, p q\}$ defines totally regular components $f_{1}, f_{2} \in \operatorname{Hol}_{p}\left(\Omega, \mathbb{C}_{p}\right)$.

In the affine case, $f=\sum_{\alpha=0}^{4} x_{\alpha} a_{\alpha}+b, a_{\alpha}, b \in \mathbb{H}$, we can characterize completely the totally regular functions:

Theorem

Every non-constant affine totally regular function belongs to the union $\cup_{p \in \mathrm{~S}^{2}} \mathrm{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)$.

The result follows from the properties:
(1) If f is affine and f, f^{2} are regular, then $J(f)^{\text {adj }}=0$, i.e. f has maximum rank 2 (cf. Gürlebeck and Sprössig 1990)
(2) f has maximum rank $2 \Rightarrow \exists p \in \mathbb{S}^{2}$ such that $f \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$.

Totally regular functions

Property (2) is an application of the energy quadric of a regular function f. It is a family of positive semi-definite quadrics $M(f)$ which contains information about the holomorphicity properties of the function (Lichnerowicz invariants). In the affine case,

$$
\operatorname{det} M(f)=0 \Leftrightarrow \exists p: f \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})
$$

and the formula

$$
\operatorname{det} M(f)=\frac{1}{2}\left(\left|e_{1}\right|^{2}+\left|e_{2}\right|^{2}\right)
$$

holds, with e_{1}, e_{2} linear combinations of elements of $J(f)^{\text {adj }}$.
(3) If $f \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$ is affine, $r k(f)=2$ and f^{2} is regular, then $f \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)$.

Corollary

If $f \in \mathcal{R}(\mathbb{H})$ is affine and f^{2} is regular, then f is totally regular.

Totally regular functions

In the affine case

$$
r k(f) \leq 2 \Rightarrow f \text { is a } J_{p} \text {-holomorphic map }
$$

In the general case, we can say something weaker:
Theorem
Let $f \in \mathcal{R}(\Omega)$. Then

- If $r k(f) \leq 2$, then f is a (pseudo)holomorphic map w.r.t. a (not nec. constant) almost complex structure $p(z)$ defined on a dense subset of Ω.
- If $\operatorname{Im}(f)$ is contained in a (real) plane H, then there exists $p \in \mathbb{S}^{2}$ such that $f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H})$.
- If $\operatorname{Im}(f)$ is contained in \mathbb{C}_{p} for some $p \in \mathbb{S}^{2}$ (i.e. $H \supseteq \mathbb{R}$), then f is a J_{p}-holomorphic function, and therefore it is totally regular.

Totally regular functions and biregularity

The "twisted" Fueter variables

$$
\begin{aligned}
v_{i} & =x_{0}+x_{1} i \in H o l_{i}\left(\mathbb{H}, \mathbb{C}_{i}\right) \\
v_{j} & =x_{0}+x_{2} j \in H o l_{j}\left(\mathbb{H}, \mathbb{C}_{j}\right) \\
v_{k} & =x_{0}-x_{3} k \in \operatorname{Hol}_{k}\left(\mathbb{H}, \mathbb{C}_{k}\right)
\end{aligned}
$$

are totally regular. We can define, for any $p \in \mathbb{S}^{2}$, a totally regular function $v_{p} \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)$, which generalizes Fueter variables.

Definition

Let $p \in \mathbb{S}^{2}$ and $\gamma(p)=p_{1} i+p_{2} j-p_{3} k$. Let \vec{x} denote the vector $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ defined by $x \in \mathbb{H}$. We set

$$
v_{p}(x)=x_{0}+(\overrightarrow{\gamma(p)} \cdot \vec{x}) p
$$

Totally regular functions and biregularity

The function v_{p} can be seen as one component of a biregular function, that is an invertible regular function $f \in C^{1}(\Omega)$ such that f^{-1} is regular.

Theorem

- For every $p \in \mathbb{S}^{2}, v_{p} \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right) \Rightarrow v_{p}$ is totally regular.
- For any $q \in \mathbb{S}^{2}, q \perp p$, let $a \in \mathbb{H}$ s.t. $\operatorname{rot}_{\gamma(a)}(i)=p, \operatorname{rot}_{\gamma(a)}(j)=q$. There exists an affine biregular function

$$
f_{a}=v_{p}+w_{a} q
$$

with totally regular components $v_{p}, w_{a} \in H o l_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)$.
$f_{a} \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$ is J_{p}-biholomorphic, with inverse

$$
f_{a}^{-1}=f_{a^{\prime}} \in H o l_{\gamma(p)}(\mathbb{H}, \mathbb{H}) \quad\left(a^{\prime}=\gamma(a)^{-1}\right)
$$

Totally regular functions and biregularity

Remark

We can take as $f_{a}=v_{p}+w_{a} q$ the biregular rotation

$$
f_{a}=i d^{a}=\operatorname{rot}_{\gamma(a)} \circ i d \circ \operatorname{rot}_{a}=\operatorname{rot}_{\gamma(a) a}
$$

defined by the reduced quaternion $\gamma(a) a \Rightarrow w_{a}=z_{2}^{a}$.
Using the energy quadric of f_{a}, it can be easily shown that $\operatorname{rot}_{\gamma(a) a}$ is holomorphic w.r.t. a circle of structures $p^{\prime} \in \mathbb{S}^{2}$:

$$
\operatorname{rot}_{\gamma(a) a} \in H o l_{p^{\prime}}(\mathbb{H}, \mathbb{H}) \quad \forall p^{\prime} \in\left\langle\operatorname{rot}_{\gamma(a)}(i), \operatorname{rot}_{\gamma(a)}(j)\right\rangle \cap \mathbb{S}^{2}
$$

Another application of the energy quadric:
Theorem (P. AACA)
An affine biregular function is always J_{p}-biholomorphic for some p : $\exists p$ s.t. $f \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$ and $f^{-1} \in \operatorname{Hol}_{\gamma(p)}(\mathbb{H}, \mathbb{H})$.

Totally regular functions and biregularity

Examples

(1) $p=i, q=j \Rightarrow a=1$

$$
\Rightarrow f_{a}=i d=z_{1}+z_{2} j=\left(x_{0}+x_{1} i\right)+\left(x_{2}+x_{3} i\right) j \in H o l_{i}
$$

(2) $p=i, q=k \Rightarrow a=\frac{j-k}{\sqrt{2}} \quad\left(f_{a}\right.$ depends on the choice of $\left.q \perp p\right)$

$$
\Rightarrow f_{a}=z_{1}-z_{2} j=\left(x_{0}+x_{1} i\right)+\left(-x_{3}+x_{2} i\right) k \in \text { Hol }_{i}
$$

(3) $p=j, q=k \Rightarrow a=\frac{1+i+j-k}{2}$

$$
\Rightarrow f_{a}=\bar{z}_{1}+\bar{z}_{2} j=\left(x_{0}+x_{2} j\right)-\left(x_{3}+x_{1} j\right) k \in \text { Hol }_{j}
$$

(4) $p=k, q=j \Rightarrow a=\frac{1-j}{\sqrt{2}}$

$$
\Rightarrow f_{a}=\bar{z}_{1}+\bar{z}_{2} j=\left(x_{0}-x_{3} k\right)+\left(x_{2}+x_{1} k\right) j \in \operatorname{Hol}_{k}
$$

Quaternionic Lagrange Interpolation

Lagrange Interpolation in \mathbb{H} :
Given k distinct points $a_{1}, \ldots, a_{k} \in \mathbb{H}$ and k values $u_{1}, \ldots, u_{k} \in \mathbb{H}$, find a Lagrange polynomial in the module of regular functions, i.e. a polynomial

$$
L \in \mathcal{R}(\mathbb{H}) \quad \text { s.t. } \quad L\left(a_{j}\right)=u_{j} \quad \text { for every } j=1, \ldots, k
$$

(cf. Gürlebeck and Sprössig 1990)

Lemma (1)

Let $p \in \mathbb{S}^{2}$ be fixed. Given any J_{p}-biholomorphic (\Rightarrow biregular) mapping $f \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$, let $f=f_{1}+f_{2} q(q \perp p)$. There exist (infinitely many) $\alpha, \beta \in \mathbb{C}_{p}$ s.t.

$$
g=\alpha f_{1}+\beta f_{2} \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)
$$

is totally regular and satisfies the conditions $g\left(a_{i}\right) \neq g\left(a_{j}\right) \forall i \neq j$. The numbers α, β can also be found in \mathbb{R}.

Quaternionic Lagrange Interpolation

From the Lemma: every J_{p}-biholomorphic mapping f gives rise to (an infinite number of) regular Lagrange interpolation functions (polynomials if f is a polynomial function), given by the formula

$$
\begin{gathered}
L=\sum_{s=1}^{k} \ell_{s} u_{s}, \quad \text { where } \\
\ell_{s}(x)=\prod_{t \neq s}\left(g(x)-g\left(a_{t}\right)\right)\left(g\left(a_{s}\right)-g\left(a_{t}\right)\right)^{-1} \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)
\end{gathered}
$$

Properties:

- The powers $\left(\ell_{s}\right)^{m}$ are regular on \mathbb{H} for every integer $m>0$ (ℓ_{s} is totally regular) and $L \in \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H}) \subseteq \mathcal{R}(\mathbb{H})$.
- The powers of L are regular if also the values u_{s} belong to the subalgebra \mathbb{C}_{p}. In this case also $L \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)$ is totally regular.

Quaternionic Lagrange Interpolation

From the Lemma: every J_{p}-biholomorphic mapping f gives rise to (an infinite number of) regular Lagrange interpolation functions (polynomials if f is a polynomial function), given by the formula

$$
\begin{gathered}
L=\sum_{s=1}^{k} \ell_{s} u_{s}, \quad \text { where } \\
\ell_{s}(x)=\prod_{t \neq s}\left(g(x)-g\left(a_{t}\right)\right)\left(g\left(a_{s}\right)-g\left(a_{t}\right)\right)^{-1} \in \operatorname{Hol}_{p}\left(\mathbb{H}, \mathbb{C}_{p}\right)
\end{gathered}
$$

Properties:

- $\operatorname{Ker}\left(d \ell_{s}\right) \supseteq \operatorname{Ker}(d g) \Rightarrow r k(L) \leq 2$ (but can be $\operatorname{Im}(L) \nsubseteq H$ plane).
- The average of two (or more) interpolating functions can have $r k>2\left(\right.$ and still be in $\operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})$ and then $\left.r k=4\right)$.

Quaternionic Lagrange Interpolation

Example

If we take the function

$$
i d^{a}=\operatorname{rot}_{\gamma(a)} \circ i d \circ \operatorname{rot}_{a}=\operatorname{rot}_{\gamma(a) a}
$$

as J_{p}-biholomorphic mapping, then g is the linear function

$$
g=\alpha f_{1}+\beta f_{2}=\alpha v_{p}+\beta w_{a}=\alpha z_{1}^{a}+\beta z_{2}^{a}
$$

If $\alpha, \beta \in \mathbb{R}$, then $g=\operatorname{rot}_{\gamma(a)} \circ\left(\alpha z_{1}+\beta z_{2}\right) \circ \operatorname{rot}_{a}$.

Remark

If all the points a_{s} lie in a complex subspace $\mathbb{C}_{\gamma(p)}$ (in particular, in \mathbb{R}), then $\operatorname{rot}_{a}\left(a_{s}\right) \in \mathbb{C}$ and the choice $\alpha=1, \beta=0$ is valid. If the values u_{s} are complex (real), then the formula reduces to the usual complex (real) Lagrange interpolation.

Directional quaternionic Lagrange Interpolation

Lemma (2)

For every finite set of distinct points $\left\{a_{s}\right\}_{s=1, \ldots, k}, \exists$ (infinite values of) $p \in \mathbb{S}^{2}$ s.t. the totally regular variable $g=v_{p}$ satisfies the condition

$$
g\left(a_{i}\right)=a_{i 0}+\left(\overrightarrow{\gamma(p)} \cdot \vec{a}_{i}\right) p \neq a_{j 0}+\left(\overrightarrow{\gamma(p)} \cdot \vec{a}_{j}\right) p=g\left(a_{j}\right)
$$

for every $i \neq j$ (\vec{a}_{i} denotes the vector part of a_{i}).
"Optimal" choice for $p \in \mathbb{S}^{2}$? For example, minimise the largest angle defined by

$$
\min _{\vec{a}_{i} \neq \vec{a}_{j}} \frac{\left|\overrightarrow{\gamma(p)} \cdot\left(\vec{a}_{i}-\vec{a}_{j}\right)\right|}{\left|\vec{a}_{i}-\vec{a}_{j}\right|}
$$

Examples

Let $a_{1}=0, a_{2}=1, a_{3}=i, a_{4}=j$ and $u_{1}=0, u_{2}=j, u_{3}=i, u_{4}=k$.
(1) Fix $p=i$ and $f=i d$ (cf. Lemma 1). We can choose $(\alpha, \beta)=(1,-1)$ and get

$$
\begin{gathered}
g=z_{1}-z_{2} \\
\Rightarrow \mathcal{E}_{B}\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)=\sqrt{\sum_{s} \mathcal{E}_{B}\left(\ell_{s}\right)^{2}} \approx 20.13 \text { and } \mathcal{E}_{B}(L) \approx 7.17
\end{gathered}
$$

(2) Let $p=i$ and $f=i d$ as before, but now choose $(\alpha, \beta)=(1,2)$ and get

$$
g=z_{1}+2 z_{2} .
$$

The interpolating set $\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{3}^{\prime}, \ell_{4}^{\prime} \in \operatorname{Hol}_{i}\left(\mathbb{H}, \mathbb{C}_{i}\right)$ has energy $\mathcal{E}_{B}\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{3}^{\prime}, \ell_{4}^{\prime}\right) \approx 243.30$.
$L^{\prime}=\sum_{s} l_{s}^{\prime} u_{s} \in H o l_{i}(\mathbb{H}, \mathbb{H})$ has $r k \leq 2$ and energy $\mathcal{E}_{B} \approx 231.04$

$$
\text { Let } a_{1}=0, a_{2}=1, a_{3}=i, a_{4}=j \text { and } u_{1}=0, u_{2}=j, u_{3}=i, u_{4}=k
$$

(3) We can get a better energy $\mathcal{E}_{B}\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \approx 18.73$ choosing

$$
g=0.77 z_{1}-0.64 z_{2}
$$

(near to optimal for fixed p and f). Now $\mathcal{E}_{B}(L) \approx 6.70$
(4) Choose p following Lemma 2.

Since $\vec{a}_{1}=\vec{a}_{2}=0, \vec{a}_{3}=(1,0,0), \vec{a}_{4}=(0,1,0)$, the "directions" to avoid correspond to $p=i, p=\frac{i+j}{\sqrt{2}}, p=j$.
The choice $p=\frac{-i+j}{\sqrt{2}}$ maximises the cosine $\min _{\vec{a}_{i} \neq \vec{a}_{j}} \frac{\left|\overrightarrow{\gamma(p)} \cdot\left(\vec{a}_{i}-\vec{a}_{j}\right)\right|}{\left|\vec{a}_{i}-\vec{a}_{j}\right|}$

$$
\Rightarrow g=v_{p}=x_{0}+\frac{1}{2}\left(x_{1}-x_{2}\right) i+\frac{1}{2}\left(-x_{1}+x_{2}\right) j .
$$

Then $\mathcal{E}_{B}\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \approx 12.92$ (optimal for $p \in \mathbb{S}^{2}$) and $\mathcal{E}_{B} \approx 7.44$

Let $a_{1}=0, a_{2}=1, a_{3}=i, a_{4}=j$ and $u_{1}=0, u_{2}=j, u_{3}=i, u_{4}=k$.
(5) The average of the interpolating polynomials defined in (3) and (4) has rank 4 (a.e.), is regular but not-holomorphic and has energies

$$
\mathcal{E}_{B} \approx 3.50, \mathcal{E}_{B}\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \approx 7.92
$$

smaller than those of the two polynomials.

References

- R. Delanghe, Math. Ann., 185, 91-111 (1970).
- K. Gürlebeck and W. Sprössig, Quaternionic analysis and elliptic boundary value Problems, Birkhäuser, Basel, 1990.
- K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic functions in the plane and n-dimensional space. Translated from the 2006 German original Funktionentheorie in Ebene und Raum, Birkhäuser Verlag, Basel, 2008.
- A. Perotti, "Holomorphic functions and regular quaternionic functions on the hyperkähler space $\mathbb{H} "$, in Proceedings of the 5th ISAAC Congress, Catania 2005, World Scientific Publishing Co. (in press) (arXiv:0711.4440v1).
- A. Perotti, "Directional quaternionic Hilbert operators," in Hypercomplex analysis, edited by I. Sabadini, M. Shapiro and F. Sommen, Birkhäuser, Basel, in press.
- A. Perotti, Every biregular function is biholomorphic, Advances in Applied Clifford Algebras, in press.
- M.V. Shapiro and N.L. Vasilevski, Complex Variables Theory Appl.. 27 no.1, 17-46 (1995).
- A. Sudbery, Mat. Proc. Camb. Phil. Soc., 85, 199-225 (1979).

