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Fueter-regular functions

H ' C2 : C2 3 z = (z1, z2) = (x0 + ix1, x2 + ix3)

←→ q = z1 + z2j = x0 + ix1 + jx2 + kx3 ∈ H

Ω bounded domain in H. A quaternionic function
f = f1 + f2j ∈ C1(Ω) is (left) regular on Ω if it is in the kernel of the
Cauchy-Riemann-Fueter operator

D = 2
(

∂

∂z̄1
+ j

∂

∂z̄2

)
=

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3
on Ω

Every (standard) holomorphic map (f1, f2) : Ω→ C2 defines a
regular function f = f1 + f2j
Every holomorphic map w.r.t. the structure defined by left
multiplication by j defines a regular function
(f ′1, f

′
2) : Ω→ C2

j holomorphic⇒ f = f ′1 + f ′2i regular
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Fueter-regular functions

H ' C2 : C2 3 z = (z1, z2) = (x0 + ix1, x2 + ix3)

←→ q = z1 + z2j = x0 + ix1 + jx2 + kx3 ∈ H

Ω bounded domain in H. A quaternionic function
f = f1 + f2j ∈ C1(Ω) is (left) regular on Ω if it is in the kernel of the
Cauchy-Riemann-Fueter operator

D = 2
(

∂

∂z̄1
+ j

∂

∂z̄2

)
=

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3
on Ω

The space R(Ω) of regular functions on Ω is the smallest right
H–module defined by a 1st -order differential operator containing
the (standard) holomorphic maps and also the holomorphic maps
w.r.t. the complex structure given by left multiplication by j
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Hypercomplex structure on H

Hypercomplex structure on H ' C2: J1, J2 complex structures on
TH ' H defined by left multiplication by i and j
J∗1 , J

∗
2 dual structures on T ∗H. We make the choice

J∗3 = J∗1J∗2 ⇒ J3 = −J1J2

We can rewrite the equations of regularity (Joyce 1998)

df + iJ∗1(df ) + jJ∗2(df ) + kJ∗3(df ) = 0

or df 0 = J∗1(df 1) + J∗2(df 2) + J∗3(df 3)

or, in complex components f = f1 + f2j ,

∂f1 = J∗2(∂f 2)
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Holomorphic maps w.r.t. a complex structure Jp

Let Jp = p1J1 + p2J2 + p3J3 be the orthogonal complex structure on H
defined by p = p1i + p2j + p3k ∈ S2 = {p ∈ H | p2 = −1}.
Let Cp = 〈1,p〉 and Lp the complex structure defined by left
multiplication by p. We have Lp = Jγ(p), where γ(p) = p1i + p2j − p3k .
Consider Jp-holomorphic maps from (Ω, Jp) to (H,Lp)

Holp(Ω,H) = {f : Ω→ H | ∂pf = 0 on Ω} = Ker∂p

where ∂p is Cauchy-Riemann: ∂p = 1
2

(
d + pJ∗p ◦ d

)
For any positive o.n. basis {1,p,q,pq} of H (p,q ∈ S2), the equations
of regularity can be rewritten as

∂pf1 = J∗q(∂pf 2)

where f = (f 0 + pf 1) + (f 2 + pf 3)q = f1 + f2q are defined by the
decomposition H = Cp ⊕ (Cp)q

⇒ every f ∈ Holp(Ω,H) is a regular function on Ω.
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Totally regular functions

Definition (cf. totally analytic variables - Delanghe 1970)

A regular function f ∈ R(Ω) is totally regular if the powers f k are
regular on Ω for every integer k ≥ 0 and f k is regular on
Ω′ = {x ∈ Ω | f (x) 6= 0} for every integer k < 0.

Example
Every Cp–valued function f ∈ Holp(Ω,H) is totally regular.

This follows from the isomorphism of commutative algebras

Holp(Ω,Cp)
φa' Hol(Ωa,C)

defined by composition with 3D–rotations rota(q) = aqa−1 and rotγ(a)

with rota(i) = γ(p) and Ωa = a−1Ωa:

φa(f ) = f a := rotγ(a) ◦ f ◦ rota
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Totally regular functions

Remark
When f ∈ Holp(Ω,H) is not Cp–valued, the decomposition f = f1 + f2q
w.r.t. any orthonormal basis {p,q,pq} defines totally regular
components f1, f2 ∈ Holp(Ω,Cp).

In the affine case, f =
∑4

α=0 xαaα + b, aα,b ∈ H, we can characterize
completely the totally regular functions:

Theorem
Every non–constant affine totally regular function belongs to the union
∪p∈S2Holp(H,Cp).

The result follows from the properties:
(1) If f is affine and f , f 2 are regular, then J(f )adj = 0, i.e. f has

maximum rank 2 (cf. Gürlebeck and Sprössig 1990)
(2) f has maximum rank 2⇒ ∃p ∈ S2 such that f ∈ Holp(H,H).
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Totally regular functions

Property (2) is an application of the energy quadric of a regular
function f . It is a family of positive semi–definite quadrics M(f ) which
contains information about the holomorphicity properties of the
function (Lichnerowicz invariants). In the affine case,

det M(f ) = 0⇔ ∃p : f ∈ Holp(H,H)

and the formula
det M(f ) =

1
2

(
|e1|2 + |e2|2

)
holds, with e1,e2 linear combinations of elements of J(f )adj .

(3) If f ∈ Holp(H,H) is affine, rk(f ) = 2 and f 2 is regular, then
f ∈ Holp(H,Cp).

Corollary

If f ∈ R(H) is affine and f 2 is regular, then f is totally regular.
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Totally regular functions

In the affine case

rk(f ) ≤ 2⇒ f is a Jp–holomorphic map

In the general case, we can say something weaker:

Theorem

Let f ∈ R(Ω). Then
If rk(f ) ≤ 2, then f is a (pseudo)holomorphic map w.r.t. a (not nec.
constant) almost complex structure p(z) defined on a dense
subset of Ω.
If Im(f ) is contained in a (real) plane H, then there exists p ∈ S2

such that f ∈ Holp(Ω,H).
If Im(f ) is contained in Cp for some p ∈ S2 (i.e. H ⊇ R), then f is a
Jp–holomorphic function, and therefore it is totally regular.
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Totally regular functions and biregularity

The “twisted” Fueter variables

vi = x0 + x1i ∈ Holi(H,Ci)

vj = x0 + x2j ∈ Holj(H,Cj)

vk = x0 − x3k ∈ Holk (H,Ck )

are totally regular. We can define, for any p ∈ S2, a totally regular
function vp ∈ Holp(H,Cp), which generalizes Fueter variables.

Definition

Let p ∈ S2 and γ(p) = p1i + p2j − p3k . Let
→
x denote the vector

(x1, x2, x3) ∈ R3 defined by x ∈ H. We set

vp(x) = x0 +

( −→
γ(p) ·

→
x
)

p
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Totally regular functions and biregularity

The function vp can be seen as one component of a biregular function,
that is an invertible regular function f ∈ C1(Ω) such that f−1 is regular.

Theorem

For every p ∈ S2, vp ∈ Holp(H,Cp)⇒ vp is totally regular.
For any q ∈ S2, q⊥p, let a ∈ H s.t. rotγ(a)(i) = p, rotγ(a)(j) = q.
There exists an affine biregular function

fa = vp + waq

with totally regular components vp,wa ∈ Holp(H,Cp).
fa ∈ Holp(H,H) is Jp–biholomorphic, with inverse

f−1
a = fa′ ∈ Holγ(p)(H,H) (a′ = γ(a)−1).
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Totally regular functions and biregularity

Remark
We can take as fa = vp + waq the biregular rotation

fa = ida = rotγ(a) ◦ id ◦ rota = rotγ(a)a

defined by the reduced quaternion γ(a)a ⇒ wa = za
2 .

Using the energy quadric of fa, it can be easily shown that rotγ(a)a is
holomorphic w.r.t. a circle of structures p′ ∈ S2:

rotγ(a)a ∈ Holp′(H,H) ∀ p′ ∈ 〈rotγ(a)(i), rotγ(a)(j)〉 ∩ S2

Another application of the energy quadric:

Theorem (P. AACA)
An affine biregular function is always Jp–biholomorphic for some p:
∃p s.t. f ∈ Holp(H,H) and f−1 ∈ Holγ(p)(H,H).
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Totally regular functions and biregularity

Examples
1 p = i ,q = j ⇒ a = 1

⇒ fa = id = z1 + z2j = (x0 + x1i) + (x2 + x3i)j ∈ Holi

2 p = i ,q = k ⇒ a = j−k√
2

(fa depends on the choice of q⊥p)

⇒ fa = z1 − z2j = (x0 + x1i) + (−x3 + x2i)k ∈ Holi

3 p = j ,q = k ⇒ a = 1+i+j−k
2

⇒ fa = z̄1 + z̄2j = (x0 + x2j)− (x3 + x1j)k ∈ Holj

4 p = k ,q = j ⇒ a = 1−j√
2

⇒ fa = z̄1 + z̄2j = (x0 − x3k) + (x2 + x1k)j ∈ Holk
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Quaternionic Lagrange Interpolation

Lagrange Interpolation in H:
Given k distinct points a1, . . . ,ak ∈ H and k values u1, . . . ,uk ∈ H, find
a Lagrange polynomial in the module of regular functions, i.e. a
polynomial

L ∈ R(H) s.t. L(aj) = uj for every j = 1, . . . , k .

(cf. Gürlebeck and Sprössig 1990)

Lemma (1)

Let p ∈ S2 be fixed. Given any Jp-biholomorphic (⇒ biregular)
mapping f ∈ Holp(H,H), let f = f1 + f2q (q⊥p). There exist (infinitely
many) α, β ∈ Cp s.t.

g = αf1 + βf2 ∈ Holp(H,Cp)

is totally regular and satisfies the conditions g(ai) 6= g(aj) ∀ i 6= j .
The numbers α, β can also be found in R.
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Quaternionic Lagrange Interpolation

From the Lemma: every Jp-biholomorphic mapping f gives rise to (an
infinite number of) regular Lagrange interpolation functions
(polynomials if f is a polynomial function), given by the formula

L =
k∑

s=1

`sus, where

`s(x) =
∏
t 6=s

(g(x)− g(at ))(g(as)− g(at ))−1 ∈ Holp(H,Cp)

Properties:

The powers (`s)m are regular on H for every integer m > 0
(`s is totally regular) and L ∈ Holp(H,H) ⊆ R(H).
The powers of L are regular if also the values us belong to the
subalgebra Cp. In this case also L ∈ Holp(H,Cp) is totally regular.
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Quaternionic Lagrange Interpolation

From the Lemma: every Jp-biholomorphic mapping f gives rise to (an
infinite number of) regular Lagrange interpolation functions
(polynomials if f is a polynomial function), given by the formula

L =
k∑

s=1

`sus, where

`s(x) =
∏
t 6=s

(g(x)− g(at ))(g(as)− g(at ))−1 ∈ Holp(H,Cp)

Properties:

Ker(d`s) ⊇ Ker(dg)⇒ rk(L) ≤ 2 (but can be Im(L) 6⊆ H plane).
The average of two (or more) interpolating functions can have
rk > 2 (and still be in Holp(H,H) and then rk = 4).
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Quaternionic Lagrange Interpolation

Example
If we take the function

ida = rotγ(a) ◦ id ◦ rota = rotγ(a)a

as Jp–biholomorphic mapping, then g is the linear function

g = αf1 + βf2 = αvp + βwa = αza
1 + βza

2

If α, β ∈ R, then g = rotγ(a) ◦ (αz1 + βz2) ◦ rota.

Remark
If all the points as lie in a complex subspace Cγ(p) (in particular, in R),
then rota(as) ∈ C and the choice α = 1, β = 0 is valid. If the values us
are complex (real), then the formula reduces to the usual complex
(real) Lagrange interpolation.
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Directional quaternionic Lagrange Interpolation

Lemma (2)
For every finite set of distinct points {as}s=1,...,k , ∃ (infinite values of)
p ∈ S2 s.t. the totally regular variable g = vp satisfies the condition

g(ai) = ai0 + (
−→
γ(p) · ~ai)p 6= aj0 + (

−→
γ(p) · ~aj)p = g(aj)

for every i 6= j (~ai denotes the vector part of ai ).

“Optimal” choice for p ∈ S2? For example, minimise the largest angle
defined by

min
~ai 6=~aj

|
−→
γ(p) ·

(
~ai − ~aj

)
|∣∣~ai − ~aj

∣∣
A. Perotti Biregularity and Lagrange interpolation
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Examples

Let a1 = 0,a2 = 1,a3 = i ,a4 = j and u1 = 0,u2 = j ,u3 = i ,u4 = k .

(1) Fix p = i and f = id (cf. Lemma 1). We can choose
(α, β) = (1,−1) and get

g = z1 − z2

⇒ EB(`1, `2, `3, `4) =

√∑
s

EB(`s)2 ≈ 20.13 and EB(L) ≈ 7.17

(2) Let p = i and f = id as before, but now choose (α, β) = (1,2) and
get

g = z1 + 2z2.

The interpolating set `′1, `
′
2, `
′
3, `
′
4 ∈ Holi(H,Ci) has energy

EB(`′1, `
′
2, `
′
3, `
′
4) ≈ 243.30.

L′ =
∑

s `
′
sus ∈ Holi(H,H) has rk ≤ 2 and energy EB ≈ 231.04
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Let a1 = 0,a2 = 1,a3 = i ,a4 = j and u1 = 0,u2 = j ,u3 = i ,u4 = k .

(3) We can get a better energy EB(`1, `2, `3, `4) ≈ 18.73 choosing

g = 0.77z1 − 0.64z2

(near to optimal for fixed p and f ). Now EB(L) ≈ 6.70
(4) Choose p following Lemma 2.

Since ~a1 = ~a2 = 0, ~a3 = (1,0,0), ~a4 = (0,1,0), the “directions” to
avoid correspond to p = i ,p = i+j√

2
,p = j .

The choice p = −i+j√
2

maximises the cosine min~ai 6=~aj

|
−→
γ(p)·(~ai−~aj)|
|~ai−~aj |

⇒ g = vp = x0 +
1
2

(x1 − x2)i +
1
2

(−x1 + x2)j .

Then EB(`1, `2, `3, `4) ≈ 12.92 (optimal for p ∈ S2) and EB ≈ 7.44
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Let a1 = 0,a2 = 1,a3 = i ,a4 = j and u1 = 0,u2 = j ,u3 = i ,u4 = k .

(5) The average of the interpolating polynomials defined in (3) and (4)
has rank 4 (a.e.), is regular but not–holomorphic and has energies

EB ≈ 3.50, EB(`1, `2, `3, `4) ≈ 7.92

smaller than those of the two polynomials.
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