An application of biregularity to quaternionic Lagrange interpolation

A. Perotti

Department of Mathematics University of Trento, Italy

ICNAAM 2008
Complex and Hypercomplex Methods in Applications
Kos, Greece 2008

Fueter-regular functions

Regular functions

- $\mathbb{H} \simeq \mathbb{C}^2$: $\mathbb{C}^2 \ni z = (z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)$ $\longleftrightarrow q = z_1 + z_2 j = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$
- Ω bounded domain in \mathbb{H} . A quaternionic function $f=f_1+f_2j\in C^1(\Omega)$ is (left) regular on Ω if it is in the kernel of the Cauchy-Riemann-Fueter operator

$$\mathcal{D} = 2\left(\frac{\partial}{\partial \bar{z}_1} + j\frac{\partial}{\partial \bar{z}_2}\right) = \frac{\partial}{\partial x_0} + i\frac{\partial}{\partial x_1} + j\frac{\partial}{\partial x_2} - k\frac{\partial}{\partial x_3} \quad \text{on } \Omega$$

- Every (standard) holomorphic map $(f_1, f_2) : \Omega \to \mathbb{C}^2$ defines a regular function $f = f_1 + f_2 j$
- Every holomorphic map w.r.t. the structure defined by *left* multiplication by j defines a regular function $(f'_1, f'_2): \Omega \to \mathbb{C}^2_j$ holomorphic $\Rightarrow f = f'_1 + f'_2 i$ regular

Fueter-regular functions

- $\mathbb{H} \simeq \mathbb{C}^2$: $\mathbb{C}^2 \ni Z = (Z_1, Z_2) = (X_0 + iX_1, X_2 + iX_3)$ $\longleftrightarrow q = z_1 + z_2 i = x_0 + i x_1 + i x_2 + k x_3 \in \mathbb{H}$
- Ω bounded domain in \mathbb{H} . A quaternionic function $f = f_1 + f_2 j \in C^1(\Omega)$ is (left) regular on Ω if it is in the kernel of the Cauchy-Riemann-Fueter operator

$$\mathcal{D} = 2\left(\frac{\partial}{\partial \bar{z}_1} + j\frac{\partial}{\partial \bar{z}_2}\right) = \frac{\partial}{\partial x_0} + i\frac{\partial}{\partial x_1} + j\frac{\partial}{\partial x_2} - k\frac{\partial}{\partial x_3} \quad \text{on } \Omega$$

• The space $\mathcal{R}(\Omega)$ of regular functions on Ω is the smallest right \mathbb{H} -module defined by a 1st-order differential operator containing the (standard) holomorphic maps and also the holomorphic maps w.r.t. the complex structure given by left multiplication by i

Hypercomplex structure on H

- Hypercomplex structure on $\mathbb{H} \simeq \mathbb{C}^2$: J_1, J_2 complex structures on $T\mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and i J_1^*, J_2^* dual structures on $T^*\mathbb{H}$. We make the choice $J_3^* = J_1^* J_2^* \Rightarrow J_3 = -J_1 J_2$
- We can rewrite the equations of regularity (Joyce 1998)

$$df + iJ_1^*(df) + jJ_2^*(df) + kJ_3^*(df) = 0$$
 or
$$df^0 = J_1^*(df^1) + J_2^*(df^2) + J_3^*(df^3)$$

or, in complex components $f = f_1 + f_2 i$,

$$\overline{\partial} f_1 = J_2^*(\partial \overline{f}_2)$$

Holomorphic maps w.r.t. a complex structure J_p

Let $J_p=p_1J_1+p_2J_2+p_3J_3$ be the orthogonal complex structure on $\mathbb H$ defined by $p=p_1i+p_2j+p_3k\in\mathbb S^2=\{p\in\mathbb H\mid p^2=-1\}.$ Let $\mathbb C_p=\langle 1,p\rangle$ and L_p the complex structure defined by left multiplication by p. We have $L_p=J_{\gamma(p)}$, where $\gamma(p)=p_1i+p_2j-p_3k$. Consider J_p -holomorphic maps from (Ω,J_p) to $(\mathbb H,L_p)$

$$\mathit{Hol}_p(\Omega,\mathbb{H})=\{f:\Omega o\mathbb{H}\mid \overline{\partial}_p f=0 \text{ on }\Omega\}=\mathit{Ker}\overline{\partial}_p$$

where $\overline{\partial}_p$ is Cauchy-Riemann: $\overline{\partial}_p = \frac{1}{2} \left(d + p J_p^* \circ d \right)$ For any positive o.n. basis $\{1, p, q, pq\}$ of \mathbb{H} $(p, q \in \mathbb{S}^2)$, the equations of regularity can be rewritten as

$$\overline{\partial}_{p}f_{1}=J_{q}^{*}(\partial_{p}\overline{f}_{2})$$

where $f=(f^0+pf^1)+(f^2+pf^3)q=f_1+f_2q$ are defined by the decomposition $\mathbb{H}=\mathbb{C}_p\oplus(\mathbb{C}_p)q$

 \Rightarrow every $f \in Hol_p(\Omega, \mathbb{H})$ is a regular function on Ω.

Definition (cf. totally analytic variables - Delanghe 1970)

A regular function $f \in \mathcal{R}(\Omega)$ is totally regular if the powers f^k are regular on Ω for every integer k > 0 and f^k is regular on $\Omega' = \{x \in \Omega \mid f(x) \neq 0\}$ for every integer k < 0.

Example

Every \mathbb{C}_p -valued function $f \in Hol_p(\Omega, \mathbb{H})$ is totally regular.

This follows from the isomorphism of commutative algebras

$$Hol_p(\Omega, \mathbb{C}_p) \stackrel{\phi_a}{\simeq} Hol(\Omega^a, \mathbb{C})$$

defined by composition with 3D-rotations $rot_a(q) = aqa^{-1}$ and $rot_{\gamma(a)}$ with $rot_a(i) = \gamma(p)$ and $\Omega^a = a^{-1}\Omega a$:

$$\phi_{a}(f) = f^{a} := rot_{\gamma(a)} \circ f \circ rot_{a}$$

Remark

When $f \in Hol_p(\Omega, \mathbb{H})$ is not \mathbb{C}_p -valued, the decomposition $f = f_1 + f_2 q$ w.r.t. any orthonormal basis $\{p, q, pq\}$ defines totally regular components $f_1, f_2 \in Hol_p(\Omega, \mathbb{C}_p)$.

In the *affine* case, $f = \sum_{\alpha=0}^4 x_\alpha a_\alpha + b$, $a_\alpha, b \in \mathbb{H}$, we can characterize completely the totally regular functions:

Theorem

Every non-constant affine totally regular function belongs to the union $\bigcup_{p\in\mathbb{S}^2} Hol_p(\mathbb{H},\mathbb{C}_p).$

The result follows from the properties:

- (1) If f is affine and f, f^2 are regular, then $J(f)^{adj} = 0$, i.e. f has maximum rank 2 (cf. Gürlebeck and Sprössig 1990)
- (2) f has maximum rank $2 \Rightarrow \exists p \in \mathbb{S}^2$ such that $f \in Hol_p(\mathbb{H}, \mathbb{H})$.

Property (2) is an application of the energy quadric of a regular function f. It is a family of positive semi-definite quadrics M(f) which contains information about the holomorphicity properties of the function (*Lichnerowicz invariants*). In the affine case,

$$\det M(f) = 0 \Leftrightarrow \exists p : f \in Hol_p(\mathbb{H}, \mathbb{H})$$

and the formula

$$\det M(f) = \frac{1}{2} \left(|e_1|^2 + |e_2|^2 \right)$$

holds, with e_1 , e_2 linear combinations of elements of $J(f)^{adj}$.

(3) If $f \in Hol_p(\mathbb{H}, \mathbb{H})$ is affine, rk(f) = 2 and f^2 is regular, then $f \in Hol_{\mathcal{D}}(\mathbb{H}, \mathbb{C}_{\mathcal{D}}).$

Corollary

If $f \in \mathcal{R}(\mathbb{H})$ is affine and f^2 is regular, then f is totally regular.

In the affine case

$$rk(f) \le 2 \Rightarrow f$$
 is a J_p -holomorphic map

In the *general* case, we can say something weaker:

Theorem

Let $f \in \mathcal{R}(\Omega)$. Then

- If rk(f) ≤ 2, then f is a (pseudo)holomorphic map w.r.t. a (not nec. constant) almost complex structure p(z) defined on a dense subset of Ω.
- If Im(f) is contained in a (real) plane H, then there exists $p \in \mathbb{S}^2$ such that $f \in Hol_p(\Omega, \mathbb{H})$.
- If Im(f) is contained in \mathbb{C}_p for some $p \in \mathbb{S}^2$ (i.e. $H \supseteq \mathbb{R}$), then f is a J_p -holomorphic function, and therefore it is totally regular.

The "twisted" Fueter variables

$$v_i = x_0 + x_1 i \in Hol_i(\mathbb{H}, \mathbb{C}_i)$$

 $v_j = x_0 + x_2 j \in Hol_j(\mathbb{H}, \mathbb{C}_j)$
 $v_k = x_0 - x_3 k \in Hol_k(\mathbb{H}, \mathbb{C}_k)$

are totally regular. We can define, for any $p \in \mathbb{S}^2$, a totally regular function $v_p \in Hol_p(\mathbb{H}, \mathbb{C}_p)$, which generalizes Fueter variables.

Definition

Let $p \in \mathbb{S}^2$ and $\gamma(p) = p_1 i + p_2 j - p_3 k$. Let \overrightarrow{x} denote the vector $(x_1, x_2, x_3) \in \mathbb{R}^3$ defined by $x \in \mathbb{H}$. We set

$$v_p(x) = x_0 + \left(\overrightarrow{\gamma(p)} \cdot \overrightarrow{x}\right)p$$

The function v_p can be seen as one component of a biregular function, that is an invertible regular function $f \in C^1(\Omega)$ such that f^{-1} is regular.

Theorem

- For every $p \in \mathbb{S}^2$, $v_p \in Hol_p(\mathbb{H}, \mathbb{C}_p) \Rightarrow v_p$ is totally regular.
- For any $q \in \mathbb{S}^2$, $q \perp p$, let $a \in \mathbb{H}$ s.t. $rot_{\gamma(a)}(i) = p$, $rot_{\gamma(a)}(j) = q$. There exists an affine biregular function

$$f_a = v_p + w_a q$$

with totally regular components v_p , $w_a \in Hol_p(\mathbb{H}, \mathbb{C}_p)$. $f_a \in Hol_p(\mathbb{H}, \mathbb{H})$ is J_p —biholomorphic, with inverse

$$f_a^{-1} = f_{a'} \in Hol_{\gamma(p)}(\mathbb{H}, \mathbb{H}) \quad (a' = \gamma(a)^{-1}).$$

Remark

We can take as $f_a = v_p + w_a q$ the biregular rotation

$$f_a = id^a = rot_{\gamma(a)} \circ id \circ rot_a = rot_{\gamma(a)a}$$

defined by the reduced quaternion $\gamma(a)a \Rightarrow w_a = z_a^a$.

Using the energy quadric of f_a , it can be easily shown that $rot_{\gamma(a)a}$ is holomorphic w.r.t. a circle of structures $p' \in \mathbb{S}^2$:

$$rot_{\gamma(a)a} \in Hol_{p'}(\mathbb{H}, \mathbb{H}) \quad \forall \ p' \in \langle rot_{\gamma(a)}(i), rot_{\gamma(a)}(j) \rangle \cap \mathbb{S}^2$$

Another application of the energy quadric:

Theorem (P. AACA)

An affine biregular function is always J_p -biholomorphic for some p: $\exists p \text{ s.t. } f \in Hol_p(\mathbb{H}, \mathbb{H}) \text{ and } f^{-1} \in Hol_{\gamma(p)}(\mathbb{H}, \mathbb{H}).$

Examples

$$\Rightarrow f_a = id = z_1 + z_2 j = (x_0 + x_1 i) + (x_2 + x_3 i) j \in Hol_i$$

2
$$p = i, q = k \Rightarrow a = \frac{j-k}{\sqrt{2}}$$
 (f_a depends on the choice of $q \perp p$)

$$\Rightarrow f_a = z_1 - z_2 j = (x_0 + x_1 i) + (-x_3 + x_2 i) k \in Hol_i$$

$$\Rightarrow f_a = \bar{z}_1 + \bar{z}_2 j = (x_0 + x_2 j) - (x_3 + x_1 j) k \in Hol_j$$

$$\Rightarrow f_a = \bar{z}_1 + \bar{z}_2 j = (x_0 - x_3 k) + (x_2 + x_1 k) j \in Hol_k$$

Lagrange Interpolation in \mathbb{H} :

Given k distinct points $a_1, \ldots, a_k \in \mathbb{H}$ and k values $u_1, \ldots, u_k \in \mathbb{H}$, find a Lagrange polynomial in the module of regular functions, i.e. a polynomial

$$L \in \mathcal{R}(\mathbb{H})$$
 s.t. $L(a_j) = u_j$ for every $j = 1, \dots, k$.

(cf. Gürlebeck and Sprössig 1990)

Lemma (1)

Let $p \in \mathbb{S}^2$ be fixed. Given any J_p -biholomorphic (\Rightarrow biregular) mapping $f \in Hol_p(\mathbb{H}, \mathbb{H})$, let $f = f_1 + f_2 q$ $(q \perp p)$. There exist (infinitely many) $\alpha, \beta \in \mathbb{C}_p$ s.t.

$$g = \alpha f_1 + \beta f_2 \in Hol_p(\mathbb{H}, \mathbb{C}_p)$$

is totally regular and satisfies the conditions $g(a_i) \neq g(a_i) \ \forall \ i \neq j$. The numbers α, β can also be found in \mathbb{R} .

From the Lemma: every J_p -biholomorphic mapping f gives rise to (an infinite number of) regular *Lagrange interpolation functions* (*polynomials* if f is a polynomial function), given by the formula

$$L = \sum_{s=1}^{k} \ell_s u_s$$
, where

$$\ell_{\mathcal{S}}(x) = \prod_{t \neq s} (g(x) - g(a_t))(g(a_s) - g(a_t))^{-1} \in \mathit{Hol}_p(\mathbb{H}, \mathbb{C}_p)$$

Properties:

- The powers $(\ell_s)^m$ are regular on \mathbb{H} for every integer m > 0 $(\ell_s$ is totally regular) and $L \in Hol_p(\mathbb{H}, \mathbb{H}) \subseteq \mathcal{R}(\mathbb{H})$.
- The powers of L are regular if also the values u_s belong to the subalgebra \mathbb{C}_p . In this case also $L \in Hol_p(\mathbb{H}, \mathbb{C}_p)$ is totally regular.

From the Lemma: every J_p -biholomorphic mapping f gives rise to (an infinite number of) regular *Lagrange interpolation functions* (polynomials if f is a polynomial function), given by the formula

$$L = \sum_{s=1}^{k} \ell_s u_s$$
, where

$$\ell_{\mathcal{S}}(x) = \prod_{t \neq s} (g(x) - g(a_t))(g(a_s) - g(a_t))^{-1} \in \mathit{Hol}_p(\mathbb{H}, \mathbb{C}_p)$$

Properties:

- $Ker(d\ell_s) \supseteq Ker(dg) \Rightarrow rk(L) \le 2$ (but can be $Im(L) \not\subseteq H$ plane).
- The average of two (or more) interpolating functions can have rk > 2 (and still be in $Hol_p(\mathbb{H}, \mathbb{H})$ and then rk = 4).

Example

If we take the function

$$id^a = rot_{\gamma(a)} \circ id \circ rot_a = rot_{\gamma(a)a}$$

as J_p —biholomorphic mapping, then g is the linear function

$$g = \alpha f_1 + \beta f_2 = \alpha v_p + \beta w_a = \alpha z_1^a + \beta z_2^a$$

If
$$\alpha, \beta \in \mathbb{R}$$
, then $g = rot_{\gamma(a)} \circ (\alpha z_1 + \beta z_2) \circ rot_a$.

Remark

If all the points a_s lie in a complex subspace $\mathbb{C}_{\gamma(p)}$ (in particular, in \mathbb{R}), then $rot_a(a_s) \in \mathbb{C}$ and the choice $\alpha = 1, \beta = 0$ is valid. If the values u_s are complex (real), then the formula reduces to the usual complex (real) Lagrange interpolation.

Directional quaternionic Lagrange Interpolation

Lemma (2)

For every finite set of distinct points $\{a_s\}_{s=1,...,k}$, \exists (infinite values of) $p \in \mathbb{S}^2$ s.t. the totally regular variable $g = v_p$ satisfies the condition

$$g(a_i) = a_{i0} + (\overrightarrow{\gamma(p)} \cdot \vec{a}_i)p \neq a_{j0} + (\overrightarrow{\gamma(p)} \cdot \vec{a}_j)p = g(a_j)$$

for every $i \neq j$ (\vec{a}_i denotes the vector part of a_i).

"Optimal" choice for $p \in \mathbb{S}^2$? For example, minimise the largest angle defined by

$$\min_{\vec{a}_i \neq \vec{a}_j} \frac{|\stackrel{\longrightarrow}{\gamma(p)} \cdot (\vec{a}_i - \vec{a}_j)|}{|\vec{a}_i - \vec{a}_j|}$$

Let
$$a_1 = 0$$
, $a_2 = 1$, $a_3 = i$, $a_4 = j$ and $u_1 = 0$, $u_2 = j$, $u_3 = i$, $u_4 = k$.

(1) Fix p = i and f = id (cf. Lemma 1). We can choose $(\alpha, \beta) = (1, -1)$ and get

$$g = z_1 - z_2$$

$$\Rightarrow \mathcal{E}_B(\ell_1, \ell_2, \ell_3, \ell_4) = \sqrt{\sum_s \mathcal{E}_B(\ell_s)^2} \approx 20.13 \text{ and } \mathcal{E}_B(L) \approx 7.17$$

(2) Let p = i and f = id as before, but now choose $(\alpha, \beta) = (1, 2)$ and get

$$g=z_1+2z_2.$$

The interpolating set $\ell'_1, \ell'_2, \ell'_3, \ell'_4 \in Hol_i(\mathbb{H}, \mathbb{C}_i)$ has energy $\mathcal{E}_B(\ell_1', \ell_2', \ell_3', \ell_4') \approx 243.30.$

 $L' = \sum_{s} \ell'_{s} u_{s} \in Hol_{i}(\mathbb{H}, \mathbb{H})$ has $rk \leq 2$ and energy $\mathcal{E}_{B} \approx 231.04$

(3) We can get a better energy $\mathcal{E}_B(\ell_1, \ell_2, \ell_3, \ell_4) \approx 18.73$ choosing

$$g = 0.77z_1 - 0.64z_2$$

(near to optimal for fixed p and f). Now $\mathcal{E}_B(L) \approx 6.70$

(4) Choose p following Lemma 2. Since $\vec{a}_1 = \vec{a}_2 = 0$, $\vec{a}_3 = (1, 0, 0)$, $\vec{a}_4 = (0, 1, 0)$, the "directions" to avoid correspond to $p = i, p = \frac{i+j}{\sqrt{2}}, p = j$.

The choice $p = \frac{-i+j}{\sqrt{2}}$ maximises the cosine $\min_{\vec{a}_i \neq \vec{a}_i} \frac{|\gamma(p) \cdot \left(\vec{a}_i - \vec{a}_j\right)|}{|\vec{a}_i - \vec{a}_i|}$ $\Rightarrow g = v_p = x_0 + \frac{1}{2}(x_1 - x_2)i + \frac{1}{2}(-x_1 + x_2)j.$

Then $\mathcal{E}_B(\ell_1,\ell_2,\ell_3,\ell_4) \approx 12.92$ (optimal for $p \in \mathbb{S}^2$) and $\mathcal{E}_B \approx 7.44$

Let
$$a_1 = 0$$
, $a_2 = 1$, $a_3 = i$, $a_4 = j$ and $u_1 = 0$, $u_2 = j$, $u_3 = i$, $u_4 = k$.

(5) The average of the interpolating polynomials defined in (3) and (4) has rank 4 (a.e.), is regular but not-holomorphic and has energies

$$\mathcal{E}_B \approx 3.50, \ \mathcal{E}_B(\ell_1, \ell_2, \ell_3, \ell_4) \approx 7.92$$

smaller than those of the two polynomials.

References

- R. Delanghe, Math. Ann., 185, 91–111 (1970).
- K. Gürlebeck and W. Sprössig, Quaternionic analysis and elliptic boundary value Problems, Birkhäuser, Basel, 1990.
- K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic functions in the plane and n-dimensional space. Translated from the 2006 German original Funktionentheorie in Ebene und Raum, Birkhäuser Verlag, Basel, 2008.
- A. Perotti, "Holomorphic functions and regular quaternionic functions on the hyperkähler space H", in *Proceedings of the 5th ISAAC Congress*, Catania 2005, World Scientific Publishing Co. (in press) (arXiv:0711.4440v1).
- A. Perotti, "Directional quaternionic Hilbert operators," in Hypercomplex analysis, edited by I. Sabadini, M. Shapiro and F. Sommen, Birkhäuser, Basel, in press.
- A. Perotti, Every biregular function is biholomorphic, Advances in Applied Clifford Algebras, in press.
- M.V. Shapiro and N.L. Vasilevski, Complex Variables Theory Appl.. 27 no.1, 17–46 (1995).
- A. Sudbery, Mat. Proc. Camb. Phil. Soc., 85, 199–225 (1979).

