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We recall some basic definitions from [1, 2]. Let 𝐷 be a subset of C𝑛 that is invariant under
complex conjugations: 𝑧ℎ := (𝑧1, . . . , 𝑧ℎ, . . . , 𝑧𝑛) ∈ 𝐷 for all 𝑧 ∈ 𝐷 and for all ℎ ∈ {1, . . . , 𝑛}.
Let {𝑒𝐾 }𝐾∈P(𝑛) be a fixed basis of the real vector space R2𝑛 . We identify R with the real vector
subspace of R2𝑛 generated by 𝑒∅ ∈ R2𝑛 , and we write 𝑒∅ = 1. For simplicity, we set 𝑒𝑘 := 𝑒{𝑘}
for all 𝑘 ∈ {1, . . . , 𝑛}.

Each element 𝑥 of the tensor product H ⊗ R2𝑛 can be uniquely written as 𝑥 =
∑
𝐾∈P(𝑛) 𝑒𝐾𝑎𝐾

with 𝑎𝐾 ∈ H. Given any function 𝐹 : 𝐷 → H ⊗ R2𝑛 , there exist unique functions 𝐹𝐾 : 𝐷 → H
such that 𝐹 =

∑
𝐾∈P(𝑛) 𝑒𝐾𝐹𝐾 (𝐹𝐾 is called the 𝐾-component of 𝐹). A function 𝐹 : 𝐷 →

H ⊗ R2𝑛 with 𝐹 =
∑
𝐾∈P(𝑛) 𝑒𝐾𝐹𝐾 is a stem function if

(1) 𝐹𝐾 (𝑧ℎ) =
{
𝐹𝐾 (𝑧) if ℎ ∉ 𝐾 ,
−𝐹𝐾 (𝑧) if ℎ ∈ 𝐾

for all 𝑧 ∈ 𝐷, 𝐾 ∈ P(𝑛) and ℎ ∈ {1, . . . , 𝑛}. Let Ω𝐷 be the axially symmetric (or circular)
open subset of H𝑛 associated to 𝐷, defined as

Ω𝐷 := {(𝛼1 + 𝐽1𝛽1, . . . 𝛼𝑛 + 𝐽𝑛𝛽𝑛) ∈ H𝑛 : 𝐽1, . . . , 𝐽𝑛 ∈ S, (𝛼1 + 𝑖𝛽1, . . . , 𝛼𝑛 + 𝑖𝛽𝑛) ∈ 𝐷}.
The (left) slice function 𝑓 = I(𝐹) : Ω𝐷 → H induced by 𝐹 is the function obtained by setting,
for each 𝑥 = (𝑥1, . . . , 𝑥𝑛) = (𝛼1 + 𝐽1𝛽1, . . . , 𝛼𝑛 + 𝐽𝑛𝛽𝑛) ∈ Ω𝐷 ,

(2) 𝑓 (𝑥) = ∑
𝐾∈P(𝑛) 𝐽𝐾𝐹𝐾 (𝑧)

where 𝐽𝐾 = 𝐽𝑘1 · · · 𝐽𝑘𝑝 if 𝐾 = {𝑘1, . . . , 𝑘 𝑝} ∈ P(𝑛) \ {∅} with 𝑘1 < · · · < 𝑘 𝑝, 𝐽∅ = 1, and
𝑧 = (𝑧1, . . . , 𝑧𝑛) = (𝛼1 + 𝑖𝛽1, . . . , 𝛼𝑛 + 𝑖𝛽𝑛) ∈ 𝐷.

We will denote by S0(Ω) the right H-module of slice functions in Ω = Ω𝐷 induced by
continuous stem functions 𝐹 ∈ C0(𝐷), and by S1(Ω) the submodule of slice functions in
Ω = Ω𝐷 induced by stem functions 𝐹 ∈ C1(𝐷).

Let J1, . . .J𝑛 be the commuting complex structures on R2𝑛 ≃ C⊗𝑛 induced, respectively,
by the standard structures of the 𝑛 copies of C. The isomorphism R2𝑛 ≃ C⊗𝑛 maps the basis
element 𝑒𝐾 of R2𝑛 to the element 𝑣𝐾 of C⊗𝑛 defined as

𝑣𝐾 = 𝑣1 ⊗ · · · ⊗ 𝑣𝑛 with 𝑣ℎ = 𝑖 if ℎ ∈ 𝐾 , 𝑣ℎ = 1 if ℎ ∉ 𝐾.

Explicitly, the complex structures are defined by

(3) Jℎ (𝑒𝐾 ) =
{
𝑒𝐾∪{ℎ} if ℎ ∉ 𝐾,

−𝑒𝐾\{ℎ} if ℎ ∈ 𝐾.

In particular, it holds Jℎ (𝑒ℎ) = −1 for ℎ = 1, . . . , 𝑛. We extend these structures to H ⊗ R2𝑛 by
setting Jℎ (𝑎 ⊗ 𝑣) = 𝑎 ⊗ Jℎ (𝑣) for all 𝑎 ∈ H and 𝑣 ∈ R2𝑛.

Let 𝐹 : 𝐷 → H ⊗ R2𝑛 be a stem function of class C 1. For each ℎ = 1, . . . , 𝑛, we denote by
𝜕ℎ and 𝜕ℎ the Cauchy-Riemann operators w.r.t. the standard complex structure on 𝐷 and Jℎ
on H ⊗ R2𝑛, i.e.

(4) 𝜕ℎ𝐹 =
1
2

(
𝜕𝐹

𝜕𝛼ℎ
− Jℎ

(
𝜕𝐹

𝜕𝛽ℎ

))
and 𝜕ℎ𝐹 =

1
2

(
𝜕𝐹

𝜕𝛼ℎ
+ Jℎ

(
𝜕𝐹

𝜕𝛽ℎ

))
,
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where 𝛼ℎ + 𝑖𝛽ℎ : 𝐷 → C is the ℎth-coordinate function of 𝐷. Let 𝑓 = I(𝐹) : Ω𝐷 → H and let
ℎ ∈ {1, . . . , 𝑛}. Each operator of the type 𝜕ℎ or 𝜕ℎ commutes with each other. We define the
slice partial derivatives of 𝑓 as the following slice functions on Ω𝐷:

(5)
𝜕 𝑓

𝜕𝑥ℎ
= I(𝜕ℎ𝐹) and

𝜕 𝑓

𝜕𝑥𝑐
ℎ

= I(𝜕ℎ𝐹).

The slice function 𝑓 = I(𝐹) is called slice-regular onΩ𝐷 if 𝐹 is holomorphic w.r.t. J1, . . . ,J𝑛,
i.e., 𝜕ℎ𝐹 = 0 for ℎ ∈ {1, . . . , 𝑛}. Equivalently, 𝜕 𝑓

𝜕𝑥𝑐
ℎ

= 0 for every ℎ. For example, every

polynomial function 𝑝(𝑥) =
∑
ℓ 𝑥
ℓ1
1 · · · 𝑥ℓ𝑛𝑛 𝑎ℓ with ordered variables and right quaternionic

coefficients 𝑎ℓ , with ℓ = (ℓ1, . . . , ℓ𝑛), is slice-regular onH𝑛. We will denote by SR(Ω) the right
quaternionic module of slice-regular functions on Ω = Ω𝐷 .

Every product on H ⊗ R2𝑛 induces a product on stem functions, and hence a structure of real
algebra on the set of slice functions. In the following we take the product obtained identifying
as above the real algebra R2𝑛 with C⊗𝑛. The corresponding (tensor) product in H ⊗ R2𝑛 is the
linear extension of

(𝑎 ⊗ 𝑒𝐻) (𝑏 ⊗ 𝑒𝐾 ) = (𝑎𝑏) ⊗ (𝑒𝐻𝑒𝐾 ) = (𝑎𝑏) (−1) |𝐻∩𝐾 |𝑒𝐻Δ𝐾 .

Let 𝑓 = I(𝐹), 𝑔 = I(𝐺) : Ω𝐷 → H be slice functions. We define the slice product
𝑓 · 𝑔 : Ω𝐷 → H of 𝑓 and 𝑔 by 𝑓 · 𝑔 := I(𝐹𝐺), where 𝐹𝐺 is the pointwise product defined by
(𝐹𝐺) (𝑧) = 𝐹 (𝑧)𝐺 (𝑧) in H ⊗ R2𝑛 for all 𝑧 ∈ 𝐷.

The slice partial derivatives satisfy Leibniz’s rule w.r.t. the slice product: for each slice
functions 𝑓 , 𝑔 ∈ S1(Ω𝐷) and ℎ = 1, . . . , 𝑛, it holds

(6)
𝜕

𝜕𝑥ℎ
( 𝑓 · 𝑔) = 𝜕 𝑓

𝜕𝑥ℎ
· 𝑔 + 𝑓 · 𝜕𝑔

𝜕𝑥ℎ
and

𝜕

𝜕𝑥𝑐
ℎ

( 𝑓 · 𝑔) = 𝜕 𝑓

𝜕𝑥𝑐
ℎ

· 𝑔 + 𝑓 · 𝜕𝑔
𝜕𝑥𝑐
ℎ

.

In particular, the slice product preserves slice regularity.

One-variable characterization. The concepts of spherical value and spherical derivative in
one variable have a central role in the characterization of slice regularity in several variables
in terms of separate one-variable regularity. Assume that 𝑔 is a slice function w.r.t. 𝑥ℎ and
define the functions D0

𝑥ℎ
𝑔(𝑥) and D1

𝑥ℎ
𝑔(𝑥) obtained taking the spherical value and the spherical

derivative of 𝑔 w.r.t. 𝑥ℎ:
(7) D0

𝑥ℎ
𝑔 := (𝑔)◦𝑠,𝑥ℎ and D1

𝑥ℎ
𝑔 := (𝑔)′𝑠,𝑥ℎ .

Let 𝑓 ∈ S(Ω) be a slice function on Ω ⊆ H𝑛, let 𝐾 ∈ P(𝑛) and let 𝜖 = 1𝐾 be the characteristic
function of 𝐾 . Then 𝑓 is a slice function w.r.t. 𝑥1 and, for each ℎ ∈ {2, . . . , 𝑛}, the truncated
spherical 𝜖-derivative D𝜖 𝑓 := D

𝜖 (ℎ−1)
𝑥ℎ−1 · · ·D𝜖 (1)

𝑥1 𝑓 , obtained iterating (7), is a well-defined
slice function w.r.t. 𝑥ℎ. Moreover, 𝑓 ∈ SR(Ω) if and only if 𝑓 is slice-regular w.r.t. 𝑥1 and,
for each ℎ ∈ {2, . . . , 𝑛} and 𝐾 ∈ P(𝑛), D𝜖 𝑓 is slice-regular w.r.t. 𝑥ℎ [2, Proposition 2.23 and
Theorem 3.23].

For example, when 𝑛 = 2, a slice function 𝑓 is slice-regular in 𝑥 = (𝑥1, 𝑥2) if and only if
𝑓 is slice-regular w.r.t. 𝑥1, and the spherical value and spherical derivative of 𝑓 w.r.t. 𝑥1 are
slice-regular w.r.t. 𝑥2.
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