SLICE FUNCTION THEORY OF SEVERAL QUATERNIONIC VARIABLES (IN A NUTSHELL)

ALESSANDRO PEROTTI

We recall some basic definitions from [1, 2]. Let *D* be a subset of \mathbb{C}^n that is invariant under complex conjugations: $\overline{z}^h := (z_1, \ldots, \overline{z}_h, \ldots, z_n) \in D$ for all $z \in D$ and for all $h \in \{1, \ldots, n\}$. Let $\{e_K\}_{K \in \mathcal{P}(n)}$ be a fixed basis of the real vector space \mathbb{R}^{2^n} . We identify \mathbb{R} with the real vector subspace of \mathbb{R}^{2^n} generated by $e_{\emptyset} \in \mathbb{R}^{2^n}$, and we write $e_{\emptyset} = 1$. For simplicity, we set $e_k := e_{\{k\}}$ for all $k \in \{1, \ldots, n\}$.

Each element x of the tensor product $\mathbb{H} \otimes \mathbb{R}^{2^n}$ can be uniquely written as $x = \sum_{K \in \mathcal{P}(n)} e_K a_K$ with $a_K \in \mathbb{H}$. Given any function $F : D \to \mathbb{H} \otimes \mathbb{R}^{2^n}$, there exist unique functions $F_K : D \to \mathbb{H}$ such that $F = \sum_{K \in \mathcal{P}(n)} e_K F_K$ (F_K is called the *K*-component of *F*). A function $F : D \to \mathbb{H} \otimes \mathbb{R}^{2^n}$ with $F = \sum_{K \in \mathcal{P}(n)} e_K F_K$ is a stem function if

(1)
$$F_K(\overline{z}^h) = \begin{cases} F_K(z) & \text{if } h \notin K, \\ -F_K(z) & \text{if } h \in K \end{cases}$$

for all $z \in D$, $K \in \mathcal{P}(n)$ and $h \in \{1, ..., n\}$. Let Ω_D be the **axially symmetric** (or **circular**) open subset of \mathbb{H}^n associated to D, defined as

$$\Omega_D := \{ (\alpha_1 + J_1\beta_1, \dots, \alpha_n + J_n\beta_n) \in \mathbb{H}^n : J_1, \dots, J_n \in \mathbb{S}, (\alpha_1 + i\beta_1, \dots, \alpha_n + i\beta_n) \in D \}.$$

The (left) slice function $f = \mathcal{I}(F) : \Omega_D \to \mathbb{H}$ induced by *F* is the function obtained by setting, for each $x = (x_1, \ldots, x_n) = (\alpha_1 + J_1\beta_1, \ldots, \alpha_n + J_n\beta_n) \in \Omega_D$,

(2)
$$f(x) = \sum_{K \in \mathcal{P}(n)} J_K F_K(z)$$

where $J_K = J_{k_1} \cdots J_{k_p}$ if $K = \{k_1, \dots, k_p\} \in \mathcal{P}(n) \setminus \{\emptyset\}$ with $k_1 < \cdots < k_p$, $J_{\emptyset} = 1$, and $z = (z_1, \dots, z_n) = (\alpha_1 + i\beta_1, \dots, \alpha_n + i\beta_n) \in D$.

We will denote by $S^0(\Omega)$ the right \mathbb{H} -module of slice functions in $\Omega = \Omega_D$ induced by continuous stem functions $F \in C^0(D)$, and by $S^1(\Omega)$ the submodule of slice functions in $\Omega = \Omega_D$ induced by stem functions $F \in C^1(D)$.

Let $\mathcal{J}_1, \ldots, \mathcal{J}_n$ be the commuting complex structures on $\mathbb{R}^{2n} \simeq \mathbb{C}^{\otimes n}$ induced, respectively, by the standard structures of the *n* copies of \mathbb{C} . The isomorphism $\mathbb{R}^{2n} \simeq \mathbb{C}^{\otimes n}$ maps the basis element e_K of \mathbb{R}^{2n} to the element v_K of $\mathbb{C}^{\otimes n}$ defined as

$$v_K = v_1 \otimes \cdots \otimes v_n$$
 with $v_h = i$ if $h \in K$, $v_h = 1$ if $h \notin K$.

Explicitly, the complex structures are defined by

(3)
$$\mathcal{J}_h(e_K) = \begin{cases} e_{K \cup \{h\}} & \text{if } h \notin K, \\ -e_{K \setminus \{h\}} & \text{if } h \in K. \end{cases}$$

In particular, it holds $\mathcal{J}_h(e_h) = -1$ for h = 1, ..., n. We extend these structures to $\mathbb{H} \otimes \mathbb{R}^{2n}$ by setting $\mathcal{J}_h(a \otimes v) = a \otimes \mathcal{J}_h(v)$ for all $a \in \mathbb{H}$ and $v \in \mathbb{R}^{2n}$.

Let $F: D \to \mathbb{H} \otimes \mathbb{R}^{2n}$ be a stem function of class \mathscr{C}^1 . For each h = 1, ..., n, we denote by ∂_h and $\overline{\partial}_h$ the **Cauchy-Riemann operators** w.r.t. the standard complex structure on D and \mathcal{J}_h on $\mathbb{H} \otimes \mathbb{R}^{2n}$, i.e.

(4)
$$\partial_h F = \frac{1}{2} \left(\frac{\partial F}{\partial \alpha_h} - \mathcal{J}_h \left(\frac{\partial F}{\partial \beta_h} \right) \right) \quad \text{and} \quad \overline{\partial}_h F = \frac{1}{2} \left(\frac{\partial F}{\partial \alpha_h} + \mathcal{J}_h \left(\frac{\partial F}{\partial \beta_h} \right) \right),$$

where $\alpha_h + i\beta_h : D \to \mathbb{C}$ is the *h*th-coordinate function of *D*. Let $f = \mathcal{I}(F) : \Omega_D \to \mathbb{H}$ and let $h \in \{1, ..., n\}$. Each operator of the type ∂_h or $\overline{\partial}_h$ commutes with each other. We define the **slice partial derivatives** of *f* as the following slice functions on Ω_D :

(5)
$$\frac{\partial f}{\partial x_h} = \mathcal{I}(\partial_h F) \text{ and } \frac{\partial f}{\partial x_h^c} = \mathcal{I}(\overline{\partial}_h F).$$

The slice function $f = \mathcal{I}(F)$ is called **slice-regular** on Ω_D if F is holomorphic w.r.t. $\mathcal{J}_1, \ldots, \mathcal{J}_n$, i.e., $\overline{\partial}_h F = 0$ for $h \in \{1, \ldots, n\}$. Equivalently, $\frac{\partial f}{\partial x_h^c} = 0$ for every h. For example, every polynomial function $p(x) = \sum_{\ell} x_1^{\ell_1} \cdots x_n^{\ell_n} a_{\ell}$ with ordered variables and right quaternionic coefficients a_{ℓ} , with $\ell = (\ell_1, \ldots, \ell_n)$, is slice-regular on \mathbb{H}^n . We will denote by $S\mathcal{R}(\Omega)$ the right quaternionic module of slice-regular functions on $\Omega = \Omega_D$.

Every product on $\mathbb{H} \otimes \mathbb{R}^{2n}$ induces a product on stem functions, and hence a structure of real algebra on the set of slice functions. In the following we take the product obtained identifying as above the real algebra \mathbb{R}^{2n} with $\mathbb{C}^{\otimes n}$. The corresponding (tensor) product in $\mathbb{H} \otimes \mathbb{R}^{2n}$ is the linear extension of

$$(a \otimes e_H)(b \otimes e_K) = (ab) \otimes (e_H e_K) = (ab)(-1)^{|H \cap K|} e_{H \Delta K}$$

Let $f = I(F), g = I(G) : \Omega_D \to \mathbb{H}$ be slice functions. We define the **slice product** $f \cdot g : \Omega_D \to \mathbb{H}$ of f and g by $f \cdot g := I(FG)$, where FG is the pointwise product defined by (FG)(z) = F(z)G(z) in $\mathbb{H} \otimes \mathbb{R}^{2n}$ for all $z \in D$.

The slice partial derivatives satisfy Leibniz's rule w.r.t. the slice product: for each slice functions $f, g \in S^1(\Omega_D)$ and h = 1, ..., n, it holds

(6)
$$\frac{\partial}{\partial x_h}(f \cdot g) = \frac{\partial f}{\partial x_h} \cdot g + f \cdot \frac{\partial g}{\partial x_h} \text{ and } \frac{\partial}{\partial x_h^c}(f \cdot g) = \frac{\partial f}{\partial x_h^c} \cdot g + f \cdot \frac{\partial g}{\partial x_h^c}$$

In particular, the slice product preserves slice regularity.

One-variable characterization. The concepts of spherical value and spherical derivative in one variable have a central role in the characterization of slice regularity in several variables in terms of separate one-variable regularity. Assume that g is a slice function w.r.t. x_h and define the functions $\mathcal{D}^0_{x_h}g(x)$ and $\mathcal{D}^1_{x_h}g(x)$ obtained taking the spherical value and the spherical derivative of g w.r.t. x_h :

(7)
$$\mathcal{D}^0_{x_h}g := (g)^\circ_{s,x_h} \quad \text{and} \quad \mathcal{D}^1_{x_h}g := (g)'_{s,x_h}.$$

Let $f \in S(\Omega)$ be a slice function on $\Omega \subseteq \mathbb{H}^n$, let $K \in \mathcal{P}(n)$ and let $\epsilon = \mathbf{1}_K$ be the characteristic function of K. Then f is a slice function w.r.t. x_1 and, for each $h \in \{2, \ldots, n\}$, the **truncated spherical** ϵ -derivative $\mathcal{D}_{\epsilon} f := \mathcal{D}_{x_{h-1}}^{\epsilon(h-1)} \cdots \mathcal{D}_{x_1}^{\epsilon(1)} f$, obtained iterating (7), is a well-defined slice function w.r.t. x_h . Moreover, $f \in S\mathcal{R}(\Omega)$ if and only if f is slice-regular w.r.t. x_1 and, for each $h \in \{2, \ldots, n\}$ and $K \in \mathcal{P}(n)$, $\mathcal{D}_{\epsilon} f$ is slice-regular w.r.t. x_h [2, Proposition 2.23 and Theorem 3.23].

For example, when n = 2, a slice function f is slice-regular in $x = (x_1, x_2)$ if and only if f is slice-regular w.r.t. x_1 , and the spherical value and spherical derivative of f w.r.t. x_1 are slice-regular w.r.t. x_2 .

References

- R. Ghiloni and A. Perotti. Slice regular functions of several Clifford variables. In *AIP Conf. Proc.*, volume 1493, pages 734–738. AIP, 2012. 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences: ICNPAA 2012, Vienna, Austria, 10–14 July 2012.
- [2] R. Ghiloni and A. Perotti. Slice regular functions in several variables. *Math. Z.*, 302(1):295–351, 2022.
 Email address: alessandro.perotti@unitn.it

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRENTO, VIA SOMMARIVE 14, TRENTO ITALY