Geometria III

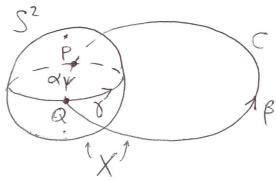
Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2016/2017 16 gennaio 2018

Si svolgano i seguenti quattro esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Esercizio 1. Sia \mathbb{R}^3 lo spazio tridimensionale ordinario dotato della topologia euclidea e sia X il sottospazio topologico di \mathbb{R}^3 definito ponendo $X := S^2 \cup C$, dove:

- S^2 è la 2-sfera standard $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$;
- C è la circonferenza $\{(x, y, z) \in \mathbb{R}^3 \mid z = 0, (x 3)^2 + y^2 = 9\}$.
- (1a) Si calcolino i gruppi di omologia ridotta $\widetilde{H}_q(X)$ per ogni $q \in \mathbb{N}$.
- (1b) Si calcolino i gruppi $H_q(X, C)$ di omologia relativa per ogni $q \in \mathbb{N}$. Si dica inoltre se C è un retratto di X e/o un retratto di deformazione di X.

SOLUZIONE: (1a) Siano P e Q i punti di intersezione tra S^2 e C. Consideriamo due cammini α e β di C e un cammino γ di S^2 che connettono P e Q come indicato nella seguente figura.



Indichiamo con a la classe di omologia del 1-ciclo $\alpha + \gamma$ in X e con b la classe di omologia del 1-ciclo $\beta - \gamma$ in X. Collassando l'immagine del cammino γ di X ad un punto, si ottiene che X è omotopicamente equivalente a $S^2 \vee S^1 \vee S^1$ e quindi $\widetilde{H}_0(X) = 0$, $\widetilde{H}_1(X) = H_1(X) = \mathbb{Z}\langle a \rangle \oplus \mathbb{Z}\langle b \rangle$, $\widetilde{H}_2(X) = H_2(X) = \mathbb{Z}$ e $\widetilde{H}_q(X) = H_q(X) = 0$ per ogni $q \geq 3$ (perché?).

(1b) Poiché X è connesso per archi e C è non vuoto, sappiamo che $H_0(X,C)=0$. Inchiamo con c la classe di omologia del 1-ciclo $\alpha+\beta$ di C. Si osservi che $H_1(C)=\mathbb{Z}\langle c\rangle$. Grazie alla successione esatta lunga della coppia (X,C) segue che $H_q(X,C)=0$ se $q\geq 3$ (in quanto $H_q(X)=0$ se $q\geq 3$ e $H_q(C)=0$ se $q\geq 2$) e la seguente successione è esatta:

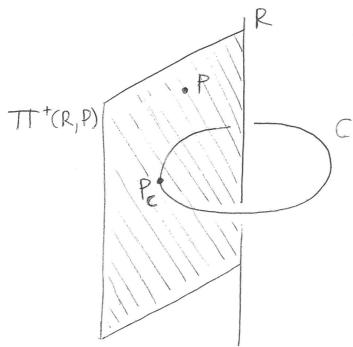
$$0 \longrightarrow \mathbb{Z} \longrightarrow H_2(X,C) \xrightarrow{\partial_2} \mathbb{Z}\langle c \rangle \xrightarrow{\phi_1} \mathbb{Z}\langle a \rangle \oplus \mathbb{Z}\langle b \rangle \xrightarrow{\psi_1} H_1(X,C) \xrightarrow{\partial_1} \mathbb{Z} = H_0(C) \xrightarrow{\phi_0} H_0(X) = \mathbb{Z}.$$

Poiché X e C sono connessi per archi, ϕ_0 è un isomorfismo. Segue che $\partial_1=0$. Osserviamo che $\phi_1(c)=a+b$. Dunque l'omomorfismo ϕ_1 è iniettivo e quindi anche $\partial_2=0$. Segue che $H_2(X,C)=\mathbb{Z}$ e la seguente successione è esatta:

$$0 \longrightarrow \mathbb{Z}\langle c \rangle \xrightarrow{\phi_1} \mathbb{Z}\langle a \rangle \oplus \mathbb{Z}\langle b \rangle \xrightarrow{\psi_1} H_1(X,C) \longrightarrow 0.$$

Ricaviamo dunque che $H_1(X,C)\simeq \frac{\mathbb{Z}\langle a\rangle\oplus\mathbb{Z}\langle b\rangle}{\operatorname{Im}(\phi_1)}\simeq \frac{\mathbb{Z}\langle a\rangle\oplus\mathbb{Z}\langle b\rangle}{\mathbb{Z}\langle a+b\rangle}\simeq \frac{\mathbb{Z}\langle a+b\rangle\oplus\mathbb{Z}\langle b\rangle}{\mathbb{Z}\langle a+b\rangle}\simeq \mathbb{Z}.$ Poiché $H_2(X)=\mathbb{Z}\not\simeq 0=H_2(C),\ C$ non è un retratto di deformazione di X. Tuttavia C è un retratto di X. Definiamo esplicitamente una retrazione $r: X \to C$. Sia R la retta affine di \mathbb{R}^3 parallela all'asse z e passante per il centro (3,0,0) della circonferenza C. Per ogni punto Pdi $\mathbb{R}^3 \setminus R$ indichiamo

- con $\Pi(R, P)$ il piano affine di \mathbb{R}^3 contenente $R \in P$,
- con $\Pi^+(R,P)$ il semipiano di $\Pi(R,P)$ individuato da R e contenente P,
- e con P_C l'unico punto di intersezione tra $\Pi^+(R,P)$ e C (vedi la figura seguente).



È sufficiente ora definire la retrazione $r: X \to C$ ponendo $r(P) := P_C$.

Esercizio 2.

- (2a) Sia X uno spazio topologico connesso per archi avente la seguente proprietà: ogni funzione continua $g: S^1 \to X$ è omotopa a una funzione costante. Mostrare che X è semplicemente connesso (cioè ha gruppo fondamentale banale).
- (2b) Sia D il disco unitario chiuso di \mathbb{R}^2 e $\partial D = S^1$ la sua frontiera. Sia $f:D\to D$ un omeomorfismo. Mostrare che $f(\partial D) = \partial D$.

SOLUZIONE: (2a) Sia $[\alpha] \in \pi(X, x_0)$ e sia $g: S^1 \to X$ la funzione continua definita da $g(e^{2\pi is}) = \alpha(s)$, ottenuta identificando S^1 con i numeri complessi di modulo 1. Per l'ipotesi, esiste $y \in X$ tale che $g \sim c_y$, con c_y la funzione costante: $c_y(e^{2\pi is}) = y$ per ogni $s \in I = [0, 1]$.

Usando la notazione delle dispense (Lemma 3.17, con $\Phi=g$ e $\Psi=c_y$), vale la relazione $u_f \circ g_* = (c_y)_*, \text{ con } u_f : \pi(X, x_0) \to \pi(X, y) \text{ isomorfismo, } g_* : \pi(S^1, 1) \to \pi(X, x_0) \text{ e } (c_y)_* :$ $\pi(S^1, 1) \to \pi(X, y).$

La curva $\gamma(s) = e^{2\pi i s}$ definisce il generatore $[\gamma]$ di $\pi(S^1, 1)$ e vale $(c_y)_*([\gamma]) = [c_y \circ \gamma] = [\epsilon_y]$. Quindi $(c_y)_*$ e dunque anche $g_* = (u_f)^{-1} \circ (c_y)_*$, è l'omomorfismo nullo, per cui $g_*([\gamma]) =$ $[g \circ \gamma] = [\alpha]$ è l'elemento neutro di $\pi(X, x_0)$. Valendo per ogni cappio α di X di punto base x_0 , si ha che $\pi(X, x_0)$ è il gruppo banale.

(2b) Se esistesse $x \in \partial D$ tale che $f(x) \in D \setminus \partial D$, anche la restrizione di f da $D \setminus \{x\}$ a $D \setminus \{f(x)\}$ sarebbe un omeomeorfismo. Ma i gruppi fondamentali di $D \setminus \{x\}$ e $D \setminus \{f(x)\}$ non sono isomorfi: il primo è il gruppo banale, il secondo è isomorfo a Z.

Esercizio 3. Si consideri l'integrale

$$I = \int_{\gamma} \frac{z^2}{(2z-3)^2} dz$$

con $\gamma = \{z \in \mathbb{C} : |z| = 3\}$ circonferenza percorsa in senso antiorario.

- (3a) Si calcoli I utilizzando la formula integrale di Cauchy.
- (3b) Calcolare nuovamente I applicando il Teorema dei residui.

SOLUZIONE: (3a) Dalla formula integrale di Cauchy per le derivate, applicata a f(z) = $z^2/4$ nel punto $z_0 = 3/2$

$$f'(3/2) = \frac{1}{2\pi i} \int_{\gamma} \frac{z^2/4}{(z - \frac{3}{2})^2} dz = \frac{1}{2\pi i} I$$

Dunque $\frac{3}{4} = \frac{1}{2\pi i}I$ e $I = \frac{3\pi i}{2}$.

(3b) La funzione integranda ha un polo doppio nel punto $z_0 = 3/2$, con residuo 3/4. Quindi $I = 2\pi i \operatorname{Res}_{z_0} f(z) = \frac{3\pi i}{2}$.

Esercizio 4.

(4a) Calcolare l'integrale improprio

$$I = \int_{-\infty}^{\infty} \frac{e^{-ix}}{1 + x^2} \, dx \,.$$

SOLUZIONE: (4a) L'integrale può essere ricondotto alla forma $\int_{-\infty}^{\infty} f(x)e^{ix} dx$ (vedi dispensa 12.18) in due modi:

(I modo): Cambiando variabile $x\mapsto -x$ si ottiene $I=\int_{-\infty}^{\infty}\frac{e^{ix}}{1+x^2}\,dx$. (II modo): Osservando che $e^{-ix}=\cos x-i\sin x$ e che $\int_{-\infty}^{\infty}\frac{\sin x}{1+x^2}\,dx=0$ poiché la funzione

integranda è dispari, si ha $I = \int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx = \int_{-\infty}^{\infty} \frac{e^{ix}}{1+x^2} dx$.

Basta ora calcolare il residuo di $\frac{e^{iz}}{1+z^2}$ nel polo semplice $z_0 = i$ nel piano superiore. Il Teorema dei Residui fornisce il risultato $I = 2\pi i \left(\frac{e^{-1}}{2i}\right) = \frac{\pi}{e}$.