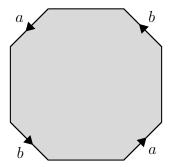
Geometria III

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2016/2017 8 giugno 2017


Si svolgano i seguenti quattro esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia \mathbb{R}^3 lo spazio tridimensionale ordinario dotato della topologia euclidea e sia $X := \mathbb{S}^2 \cup R$ il sottospazio topologico di \mathbb{R}^3 definito come segue:

- \mathbb{S}^2 è la sfera standard $\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\};$
- R è la retta $\{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}.$
- (1a) Si calcolino i gruppi $H_q(X)$ per ogni $q \in \mathbb{N}$. Si dica inoltre se X è omeomorfo a $\mathbb{S}^2 \vee \mathbb{S}^1$.
- (1b) Si dica se esiste un punto p di X tale che lo spazio topologico $X \setminus \{p\}$ sia omotopicamente equivalente a \mathbb{S}^1 .

Esercizio 2. Si consideri lo spazio topologico X ottenuto identificando a coppie quattro lati di un ottagono come in figura.

- (2a) Si calcoli il gruppo fondamentale di X.
- (2b) Si dica se X è omotopicamente equivalente a una superficie compatta.

Esercizio 3. Sia $\Omega=\{z\in\mathbb{C}:|z-1|\leq 2\}.$ Sia γ il bordo di Ω percorso in senso antiorario.

(3a) Si calcoli il seguente integrale, senza usare il Teorema dei residui:

$$\int_{\gamma} \frac{\cosh z}{z} dz$$

(3b) Si calcoli il residuo all'infinito della funzione meromorfa $f(z) = \frac{\cosh z}{z^4}$.

Esercizio 4. (4a) Si calcoli l'integrale

$$\int_0^{+\infty} \frac{x^2}{x^4 + 1} dx.$$

(4b) Determinare il numero di soluzioni dell'equazione $e^z+3z^5=0$ nel disco unitario $\{z\in\mathbb{C}:|z|<1\}.$