Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2021/2022

10 gennaio 2023

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni. Il tempo a disposizione è di tre ore.

Esercizio 1. Si risponda ai seguenti quesiti:

- (1a) Sia X uno spazio topologico contenente almeno tre punti. Si dimostri che X è di Hausdorff se e soltanto se X soddisfa la seguente proprietà: assegnati arbitrariamente tre punti distinti x_1, x_2 e x_3 di X, esistono tre aperti U_1, U_2 e U_3 di X tali che $x_1 \in U_1, x_2 \in U_2, x_3 \in U_3, U_1 \cap U_2 = \emptyset, U_1 \cap U_3 = \emptyset$ e $U_2 \cap U_3 = \emptyset$.
- (1b) Siano Y e Z due spazi topologici compatti e sia $Y \times Z$ il loro prodotto topologico. Supponiamo che, per ogni coppia di sottoinsiemi non-vuoti compatti A e B di $Y \times Z$, si abbia $A \cap B \neq \emptyset$. Si dimostri che Y e Z sono connessi.

Esercizio 2. Sia \mathbb{R} la retta reale dotata della topologia euclidea e sia \mathcal{R} la relazione di equivalenza su \mathbb{R} definita ponendo:

$$x\mathcal{R}y$$
 se e soltanto se $|x| = |y|$.

Indichiamo con \mathbb{R}/\mathcal{R} lo spazio topologico quoziente di \mathbb{R} modulo \mathcal{R} e con $\pi : \mathbb{R} \to \mathbb{R}/\mathcal{R}$ la proiezione naturale al quoziente topologico.

- (2a) Si dica se π è aperta e/o chiusa.
- (2b) Si dimostri che \mathbb{R}/\mathcal{R} è omeomorfo al sottospazio topologico $[0, +\infty)$ di \mathbb{R} .

Esercizio 3. Sia S la sfera di raggio uno centrata nell'origine in \mathbb{R}^3 e sia X lo spazio ottenuto unendo S con i sei piani tangenti alla sfera e ortogonali agli assi coordinati.

- (3a) Si mostri che lo spazio X è omotopicamente equivalente allo spazio $Y = S \cup C$ ottenuto unendo S e la superficie C del cubo di lato 2 centrato nell'origine.
- (3b) Si determini il gruppo fondamentale di X.

Esercizio 4. (4a) Si calcoli il residuo in z=0 della funzione

$$f(z) = \frac{e^z - 1}{\sin^2 z} \,.$$

(4b) (i) Si mostri che l'operatore $\frac{\partial}{\partial \overline{z}}$ soddisfa la proprietà del prodotto:

$$\frac{\partial (fg)}{\partial \overline{z}} = \frac{\partial f}{\partial \overline{z}}g + f\frac{\partial g}{\partial \overline{z}}.$$

(ii) Sia f una funzione di classe C^1 su un aperto $\Omega \subseteq \mathbb{C}$, tale che f^2 sia olomorfa in Ω . Usando (i), mostrare che f è olomorfa in Ω .