Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2021/2022 6 febbraio 2023

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni. Il tempo a disposizione è di tre ore.

Esercizio 1. Sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti della retta reale \mathbb{R} . Definiamo il sottoinsieme ξ di $\mathcal{P}(\mathbb{R})$ ponendo

$$\xi := \{\varnothing, \mathbb{R}\} \cup \{(-r, r) \in \mathcal{P}(\mathbb{R}) \mid r \in \mathbb{R}, r > 0\}.$$

- (1a) Si dimostri che ξ è una topologia su $\mathbb R$ strettamente meno fine della topologia euclidea di $\mathbb R$.
- (1b) Si dimostri che l'intervallo (-1,2] è un sottoinsieme compatto di (\mathbb{R},ξ) .
- (1c) Sia ξ^{\bullet} la topologia prodotto su $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ di ξ con ξ . Si dimostri che il sottospazio topologico $Y := \{(0,0), (1,1)\}$ di $(\mathbb{R}^2, \xi^{\bullet})$ è connesso per archi.

Esercizio 2. Sia \mathbb{R} la retta reale dotata della topologia euclidea, sia I l'intervallo [0,2] di \mathbb{R} dotato della topologia relativa e sia \mathcal{R} la relazione di equivalenza su I tale che $[x]_{\mathcal{R}} = [0,1] \cup \{2\}$ se $x \in [0,1] \cup \{2\}$ e $[x]_{\mathcal{R}} = \{x\}$ se $x \in (1,2)$. Indichiamo con I/\mathcal{R} lo spazio topologico quoziente di I modulo \mathcal{R} .

- (2a) Si dimostri che I/\mathcal{R} è T_2 .
- (2b) Si dimostri che la proiezione naturale $\pi: I \to I/\mathcal{R}$ è chiusa.

Esercizio 3. Siano X e Y i sottospazi topologici di \mathbb{R}^3 così definiti

$$X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}, \quad Y = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, z = 0\}.$$

Sia $Z = \mathbb{RP}^2$ il piano proiettivo.

- (3a) Si calcoli il gruppo fondamentale di X.
- (3b) Si stabilisca se esiste una retrazione $r: X \to A$, con A sottospazio di X omeomorfo a Y o a Z. In caso positivo, dire se si tratta di un retratto di deformazione.

Esercizio 4. (4a) Sia γ la circonferenza unitaria, percorsa in senso antiorario. Si calcoli l'integrale di linea

$$I = \int_{\gamma} \frac{dz}{z^2(z - 1/2)}$$

(4b) Mostrare che la funzione $f(z) = e^z + 5z^3 + 1$ ha tre zeri nel disco unitario aperto D.