Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2021/2022 8 luglio 2022

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni. Il tempo a disposizione è di tre ore.

Esercizio 1. Sia \mathbb{R} la retta reale, sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti di \mathbb{R} e sia η la famiglia di sottoinsiemi di \mathbb{R} definita ponendo

$$\eta := \{ \varnothing, \mathbb{R} \} \cup \{ (-\infty, a) \in \mathcal{P}(\mathbb{R}) : a \in \mathbb{R} \}.$$

- (1a) Si dimostri che η è una topologia di \mathbb{R} , non Hausdorff, strettamente meno fine della topologia euclidea di \mathbb{R} .
- (1b) Sia S il sottoinsieme di \mathbb{R} definito ponendo $S := \bigcup_{n \in \mathbb{N} \setminus \{0\}} \left\{ \frac{1}{n} \right\}$. Si calcoli la parte interna, la chiusura e la frontiera di S in (\mathbb{R}, η) .
- (1c) Sia Q il quadrato $[0,1] \times [0,1]$ di \mathbb{R}^2 e sia η^2 la topologia prodotto di η con η . Si dica se Q è un sottoinsieme compatto e/o connesso di (\mathbb{R}^2, η^2) .

Esercizio 2. Uno spazio topologico (X, τ) è detto localmente compatto se ogni suo punto possiede un intorno compatto in (X, τ) ovvero se, per ogni $x \in X$, esiste un intorno U_x di x in (X, τ) tale che U_x sia anche un sottoinsieme compatto di (X, τ) (dunque U_x è un intorno compatto di x in (X, τ)).

Sia (X,τ) uno spazio topologico localmente compatto e sia $f:(X,\tau)\to (Y,\xi)$ una applicazione continua, surgettiva ed aperta tra spazi topologici. Si dimostri che anche (Y,ξ) è localmente compatto.

Esercizio 3. Siano A e B i sottospazi topologici di \mathbb{R}^4 definiti da

$$A = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 = 1\}, \quad B = \{(x, y, z, w) \in \mathbb{R}^4 \mid z^2 + w^2 = 1\}.$$

- (3a) Calcolare i gruppi fondamentali di A e di B.
- (3b) Calcolare i gruppi fondamentali di $A \cap B$ e di $A \cup B$.

Esercizio 4. (4a) Si calcolino gli integrali di linea

$$\int_{\gamma} z e^{z^2} dz$$

prima con γ segmento da 1 a 2+i e poi con γ semicirconferenza centrata nell'origine, passante per 1, i, -1.

(4b) Si calcoli il numero degli zeri del polinomio $p(z) = -2z^5 + 6iz^2 + z + i$ appartenenti alla corona circolare $C = \{z \in \mathbb{C} \mid 1 \leq |z| \leq 2\}.$