MULTIDIMENSIONAL RESIDUES AND IDEAL MEMBERSHIP

Alessandro Perotti

ABSTRACT. Let I(f) be a zero-dimensional ideal in $\mathbb{C}[z_1, \ldots, z_n]$ defined by a mapping f. We compute the logarithmic residue of a polynomial g with respect to f. We adapt an idea introduced by Aizenberg to reduce the computation to a special case by means of a limiting process.

We then consider the total sum of local residues of g w.r.t. f. If the zeroes of f are simple, this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f.

Some applications are given. In particular, the global residue gives, for any polynomial, a canonical representative in the quotient space $\mathbf{C}[z]/I(f)$.

1. INTRODUCTION

We present some algebraic applications of the theory of multidimensional residues in \mathbb{C}^n . The logarithmic residues and the local (or Grothendieck) residues have been studied by many authors. In particular, we consider some ideas of Aizenberg, Tsikh and Yuzhakov (see [3] or [6] for a survey).

Let I(f) be a zero-dimensional ideal in $\mathbb{C}[z_1, \ldots, z_n]$ defined by a polynomial mapping f. In Section 2 we consider the problem of computing the logarithmic residue of a polynomial g with respect to f. In the special case when the principal part of every component f_i is a power $z_i^{k_i}$, we give a method in order to simplify the computation. We reduce it to the application, to only one special polynomial, of a linear functional introduced by Aizenberg [1] and to the finding of the projection of g onto a finite-dimensional subspace of $\mathbb{C}[z_1, \ldots, z_n]$. We also give a description of the radical of I.

In the general case, we adapt an idea introduced by Aizenberg to reduce to the special case by means of a limiting process (Proposition 2 and Theorem 1).

In Section 3 we consider the total sum of local residues of a polynomial with respect to the mapping f. If all the zeroes of f are simple, we show that this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f to get a similar result (Theorem 2).

In Section 4 we say something about the applications of these results. In particular, we show (Proposition 3) how the total sum of residues gives, for any polynomial, a canonical representative of its class in the quotient space $\mathbf{C}[z]/I(f)$.

We wish to acknowledge the hospitality of the Mathematics Department of the Trento University.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

¹⁹⁹¹ Mathematics Subject Classification. Primary 32A27; Secondary 32C30, 32A25.

Key words and phrases. Multidimensional Residues, Local Residues, Integral Representations. The author is a member of the G.N.S.A.G.A. of C.N.R.

ALESSANDRO PEROTTI

2. Logarithmic Residues

2.1. Let $I = I(f) = (f_1, \ldots, f_n)$ be a zero-dimensional polynomial ideal in $\mathbf{C}[z] = \mathbf{C}[z_1, \ldots, z_n]$. This means that the zero set $V(f) = V(f_1, \ldots, f_n)$ is a discrete algebraic variety in \mathbf{C}^n , with at most $\deg(f_1) \cdots \deg(f_n)$ points, counted with their multiplicities. Let $z^{(1)}, \ldots, z^{(N)}$ be these (possibly repeated) points. Given a polynomial $g \in \mathbf{C}[z]$, we want to compute the logarithmic residue of g with respect to the mapping $f = (f_1, \ldots, f_n)$, that is the sum

$$\operatorname{LRes}_{f}(g) = \sum_{\nu=1}^{N} g(z^{(\nu)})$$

2.2. We first consider the special case when $f_i = z_i^{k_i} + P_i$, i = 1, ..., n, where the total degree of P_i is less than k_i . In this situation, the logarithmic residue is given by an explicit formula introduced by Aizenberg (see [1], [3], [4], [6]), which can be derived from the application of the Leray-Koppelman integral representation formula for holomorphic functions (see for example [4] Section 3) on a pseudoball in \mathbf{C}^n :

$$\operatorname{LRes}_{f}(g) = \mathcal{N}\left(gJ\frac{z_{1}\cdots z_{n}}{z_{1}^{k_{1}}\cdots z_{n}^{k_{n}}}\sum_{|\alpha|=0}^{\operatorname{deg}(g)}(-1)^{|\alpha|}\left(\frac{P_{1}}{z_{1}^{k_{1}}}\right)^{\alpha_{1}}\cdots\left(\frac{P_{n}}{z_{n}^{k_{n}}}\right)^{\alpha_{n}}\right)$$

where J is the Jacobian determinant of the mapping f and \mathcal{N} is the linear functional on the polynomials in z_1, \ldots, z_n and $1/z_1, \ldots, 1/z_n$ that assigns to each polynomial its free term.

We show that the computation of $\operatorname{LRes}_f(g)$ can be simplified by exploiting the decomposition $\mathbb{C}[z] = \mathbb{C}_{k-1}[z] \oplus I$, where $\mathbb{C}_{k-1}[z]$ is the *N*-dimensional space of the polynomials in $\mathbb{C}[z]$ with degree less than k_i with respect to z_i for every $i = 1, \ldots, n$. This follows from the particular form of the polynomials f_i . In fact, it can be easily seen that f_1, \ldots, f_n is a Gröbner basis (not necessarily reduced) of the ideal I with respect to any degree ordering.

Let z^{α} denote the monomial $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. Let $K_0(z,\zeta) \in \mathbf{C}[z,\zeta]$ be a polynomial which belongs to $\mathbf{C}_{k-1}[z]$ for any fixed ζ and to $\mathbf{C}_{k-1}[\zeta]$ for any fixed z and has the following property:

(*) the set $\{K_{\alpha}(\zeta)\}$ defined by the decomposition $K_0(z,\zeta) = \sum_{\alpha} K_{\alpha}(\zeta) z^{\alpha}$ is a basis of $\mathbf{C}_{k-1}[\zeta]$.

Let $K(z) = \text{LRes}_f(K_0) = \sum_{\alpha} \text{LRes}_f(K_{\alpha}) z^{\alpha}$. Consider the non-degenerate bilinear form on $\mathbf{C}[z]$ defined for any $p = \sum_{\alpha} a_{\alpha} z^{\alpha}$, $q = \sum_{\alpha} b_{\alpha} z^{\alpha}$ by

$$\left\langle p,q\right\rangle _{K}=\sum_{\alpha,\beta}m_{\alpha,\beta}a_{\alpha}b_{\beta}$$

where $M = (m_{\alpha,\beta})$ is the transition matrix from the basis $\{K_{\alpha}\}$ to the basis $\{z^{\beta}\}_{0 \leq \beta_i < k_i}$.

Then we get the following result.

Proposition 1. The logarithmic residue of $g \in \mathbf{C}[z]$ with respect to f is given by the linear functional $\langle \cdot, K \rangle_K$ evaluated on the (unique) projection g_0 of g in $\mathbf{C}_{k-1}[z]$.

Proof. if $g = g_0 + g_1 \in \mathbf{C}_{k-1}[z] \oplus I$ and $g_0 = \sum_{\alpha} a_{\alpha} z^{\alpha} = \sum_{\alpha,\beta} m_{\alpha,\beta} a_{\alpha} K_{\beta}$, then $\operatorname{LRes}_f(g) = \operatorname{LRes}_f(g_0) = \sum_{\alpha,\beta} m_{\alpha,\beta} a_{\alpha} \operatorname{LRes}_f(K_{\beta}) = \langle g_0, K \rangle_K.$ Two possible choices for the kernel $K_0(z,\zeta)$ are the following:

(i) $K_0(z,\zeta) = \sum_{0 \le \alpha_i < k_i} \prod_i (z_i\zeta_i)^{\alpha_i}$, with associated form $\langle p,q \rangle = \sum_{\alpha} a_{\alpha}b_{\alpha}$; (ii) $K_0(z,\zeta) = \prod_i \frac{(\zeta_i^{k_i} - z_i^{k_i})}{(\zeta_i - z_i)}$, with associated form $\langle p,q \rangle = \sum_{\alpha} a_{\alpha}b_{k-\alpha-1}$, where $k - \alpha - 1$ is the multiindex $(k_1 - \alpha_1 - 1, \dots, k_n - \alpha_n - 1)$.

Remark. The second kernel is a Hefer determinant of the mapping $Q = f - P = (z_1^{k_1}, \ldots, z_n^{k_n})$. It is the determinant of the polynomial matrix $(P_{ij}(z, \zeta))$ defined by the Hefer expansions

$$Q_i(\zeta) - Q_i(z) = \sum_j P_{ij}(z,\zeta)(\zeta_j - z_j)$$

Remark. If K_0 have integer coefficients, then the coefficients of K(z) are integer polynomial expressions in the coefficients of the f_i . If the f_i have integer, rational or real coefficients respectively, the same holds for K(z).

2.3. Let $K_0(z,\zeta)$ be the kernel given in (i). If the polynomials f_i have real coefficients, then $\langle K, K \rangle_K$ is a real number greater than N^2 , since K(0) = N. It follows the decomposition $\mathbf{C}[z] = \langle K \rangle \oplus \left(\mathbf{C}_{k-1}[z] \cap \langle K \rangle^{\perp} \right) \oplus I$, where the second subspace is formed by the polynomials $g \in \mathbf{C}_{k-1}[z]$ such that $\operatorname{LRes}_f(g) = 0$. Then the set of polynomials vanishing on V(f), that is the radical ideal Rad I, decomposes as

$$\operatorname{Rad} I = (\operatorname{Rad} I \cap \mathbf{C}_{k-1}[z]) \oplus I$$

with

Rad
$$I \cap \mathbf{C}_{k-1}[z] = \left\{ g \in \langle K \rangle^{\perp} \cap \mathbf{C}_{k-1}[z] : (g^l)_0 \in \langle K \rangle^{\perp} \text{ for every } l = 2, \dots, N \right\}$$

Here $(g^l)_0$ denotes the component of g^l in $\mathbf{C}_{k-1}[z]$.

Remark. Since $\langle K_0(a,\zeta), K(\zeta) \rangle_K = K(a)$, if K is not the constant N we get that $K_0(a,\zeta) \in \langle K \rangle^{\perp} \cap \mathbf{C}_{k-1}[\zeta]$ if and only if K(a) = 0.

2.4. Now we return to the general case. Let $f = (f_1, \ldots, f_n)$ be a polynomial mapping with a discrete zero set $V(f) = \{z^{(1)}, \ldots, z^{(N)}\}$. Let $k_i = \deg(f_i)$ for $i = 1, \ldots, n$. Then $N \leq k_1 \cdots k_n$.

We use an idea introduced by Aizenberg to reduce the general case to the previous case.

If, for some *i*, the polynomial f_i has the special form considered in section 2.1, with principal part $z_j^{k_i}$, we set $f'_j = f_i$. For the remaining indices, we set $f'_i = z_i^{k_i+1} + \mu f_i$, $\mu \in \mathbb{C}$. Let I'_{μ} be the ideal generated by f'_1, \ldots, f'_n . It has zero set V(f') containing $M = \deg(f'_1) \cdots \deg(f'_n)$ points (with multiplicities), which we shall denote by $z_{\mu}^{(1)}, \ldots, z_{\mu}^{(M)}$. If f is not in the special form, than M > N.

Let $g \in \mathbf{C}[z]$. Let $a = (a_1, \ldots, a_n)$ be a vector of complex parameters and $g' = g + \sum_i a_i z_i$. For any fixed value of μ , f' has the special form considered in 2.1. Then we can compute the logarithmic residues $\operatorname{LRes}_{f'}((g')^l)$, $l = 1, \ldots, M$. These are polynomial expressions in μ, a_1, \ldots, a_n . From Newton's formula, we can find the elementary symmetric functions $\sigma_{g'}^l(\mu)$ in the quantities $g'(z_{\mu}^{(1)}), \ldots, g'(z_{\mu}^{(M)})$.

It follows from Rouché's principle (see [4] Section 2) that N elements of V(f') tend to the points in V(f) as $\mu \to \infty$, while the other M - N points tend to ∞ . After reordering, we can assume that $z_{\mu}^{(1)}, \ldots, z_{\mu}^{(N)}$ have limits $z^{(1)}, \ldots, z^{(N)}$ respectively.

Let us denote by $\sigma_{g'}^l$, l = 1, ..., N, the elementary symmetric functions in $g'(z^{(1)}), \ldots, g'(z^{(N)})$. The polynomial g' can vanish identically (with respect to a) only in the point 0 and in this case g(0) = 0. If $0 \in V(f)$, then $0 \in V(f')$ with the same multiplicity h. Assume that $z_{\mu}^{(1)} = 0, \ldots, z_{\mu}^{(h)} = 0$. Let us denote by $\sigma_{g'}^{-l}$, $l = 1, \ldots, N - h$, the elementary symmetric functions in $g'(z^{(h+1)})^{-1}, \ldots, g'(z^{(N)})^{-1}$.

Proposition 2. (i)
$$\sigma_g^l = \lim_{a \to 0} \sigma_{g'}^l$$
 for every $l = 1, ..., N$
(ii) $\sigma_{g'}^l = \lim_{\mu \to \infty} \frac{\sigma_{g'}^{M-N+l}(\mu)}{\sigma_{g'}^{M-N}(\mu)}$ for every $l = 1, ..., N$.

Proof. (i) is immediate, since $\sigma_{g'}^l$ depends polynomially from a; for (ii), we adapt the arguments given in [4] (Section 21.3). If $0 \notin V(f)$ then $\sigma_{g'}^M(\mu) \neq 0$. For all a with the exception of a set of complex dimension n-1, the ratios $\sigma_{g'}^{M-l}(\mu)(\sigma_{g'}^M(\mu))^{-1}$ tend to 0 for $l = N + 1, \ldots, M$, and to $\sigma_{g'}^{-l}$ for $l = 1, \ldots, N$. But the functions $\sigma_{g'}^l(\mu)$ are polynomials in $\mathbf{C}(a)[\mu]$ and therefore the ratios $\sigma_{g'}^{M-l}(\mu)(\sigma_{g'}^M(\mu))^{-1}$ have limit in $\mathbf{C}(a)$, as $\mu \to \infty$, equal to 0 for $l = N + 1, \ldots, M$, and equal to $\sigma_{g'}^{-l}$ for $l = 1, \ldots, N$.

Then $\sigma_{g'}^{M-N+l}(\mu) \left(\sigma_{g'}^{M-N}(\mu)\right)^{-1}$ tends to $\sigma_{g'}^{-N+l} \left(\sigma_{g'}^{-N}\right)^{-1} = \sigma_{g'}^{l}$ for every $l = 1, \ldots, N$.

If $0 \in V(f)$ with multiplicity h, then $\sigma_{g'}^{l}(\mu) \equiv 0$ for $l = M - h + 1, \ldots, M$, while $\sigma_{g'}^{M-h}(\mu) \not\equiv 0$. The ratios $\sigma_{g'}^{M-h-l}(\mu) \left(\sigma_{g'}^{M-h}(\mu)\right)^{-1}$ tend to 0 for $l = N - h + 1, \ldots, M - h$, and to $\sigma_{g'}^{-l}$ for $l = 1, \ldots, N - h$. In particular, $\sigma_{g'}^{M-N}(\mu) \left(\sigma_{g'}^{M-h}(\mu)\right)^{-1}$ has limit $\sigma_{g'}^{-N+h} \not\equiv 0$, hence $\sigma_{g'}^{M-N}(\mu) \not\equiv 0$.

It remains to note that $\sigma_{g'}^l = \sigma_{g'}^{-N+h+l} \left(\sigma_{g'}^{-N+h}\right)^{-1}$ for every $l = 1, \dots, N-h$.

Remark. In general, the number N is not known in advance. It can be determined from the previous limiting processes, by counting how many ratios $\sigma_{g'}^{M-h-l}(\mu) \left(\sigma_{g'}^{M-h}(\mu)\right)^{-1}$ tend to 0. Equivalently, it is the number of functions $\sigma_{g'}^{M-h-l}(\mu)$ which have the same μ -degree as $\sigma_{g'}^{M-h}(\mu)$.

In particular, $\sigma_q^1 = \text{LRes}_f(g)$. We have proved the following result.

Theorem 1. The logarithmic residue of any $g \in \mathbf{C}[z]$ with respect to f can be computed from

$$\operatorname{LRes}_{f}(g) = \lim_{a \to 0} \lim_{\mu \to \infty} \frac{\sigma_{g'}^{M-N+1}(\mu)}{\sigma_{g'}^{M-N}(\mu)}$$

3. Local Residues

Now we consider the total sum of local residues of a polynomial $g \in \mathbf{C}[z]$ with respect to the polynomial mapping $f = (f_1, \ldots, f_n)$. In general, if $f = (f_1, \ldots, f_n)$ is a holomorphic mapping with an isolated zero a in a closed neighbourhood U_a of a, the local (or Grothendieck) residue at a of a holomorphic function g on U_a with respect to f is the integral

$$\operatorname{res}_{a,f}(g) = \frac{1}{(2\pi i)^n} \int_{\Gamma_a(f)} \frac{g \, dz_1 \wedge \dots \wedge dz_n}{f_1 \cdots f_n}$$

where $\Gamma_a(f)$ is the *n*-chain = $\{z \in U_a : |f_i(z)| = \epsilon_i, i = 1, ..., n\}$, with $\epsilon_i > 0$ such that $\Gamma_a(f)$ is relatively compact in U_a (see for example [5]).

3.1. Let $I = (f_1, \ldots, f_n)$ be a zero-dimensional polynomial ideal in $\mathbb{C}[z]$. Since f has a finite number of isolated zeroes, we can consider the global residue $\operatorname{Res}_f(g) = \sum_{a \in V(f)} \operatorname{res}_{a,f}(g)$ of the local residues of $g \in \mathbb{C}[z]$ with respect to f.

Remark. If $g = h \cdot J$, where J is the Jacobian determinant of the mapping f, the local residue coincides with the logarithmic residue of h at a. Then $\operatorname{LRes}_f(h) = \operatorname{Res}_f(h \cdot J)$.

If f has the special form $f_i = z_i^{k_i} + P_i$, with $\deg(P_i) < k_i$, the global residue $\operatorname{Res}_f(g)$ can be computed from the explicit formula of Aizenberg [1].

In the general case, Yuzhakov introduced in [9] an algorithm to reduce the problem to the special case, by applying the transformation formula for the local residue and the generalized resultants. We proceed in a different way. We obtain $\operatorname{Res}_f(g)$ from the computation of a finite number of (global) logarithmic residues, which can be found with the method of Section 2.

3.2. In the case that the zeroes $z^{(1)}, \ldots, z^{(N)}$ of f are all simple, then $\operatorname{Res}_f(g) = \sum_{\nu=1}^{N} \frac{g(z^{(\nu)})}{J(z^{(\nu)})}$. We can now apply the following lemma, which generalizes Newton's formulas (for a proof, see for example [7]).

Lemma 1. Let $\sigma^l(a)$ denote the *l*-th elementary symmetric function of *m* scalars a_1, \ldots, a_m . If b_1, \ldots, b_m are scalars different from zero, the sum $\sigma^1\left(\frac{a}{b}\right) = \frac{a_1}{b_1} + \cdots + \frac{a_m}{b_m}$ is given by

$$\sigma^1\left(\frac{a}{b}\right) = \sum_{k=0}^{m-1} (-1)^k \frac{\sigma^1(ab^k) \cdot \sigma^{m-k-1}(b)}{\sigma^m(b)}$$

Then we obtain the following formula:

$$\operatorname{Res}_{f}(g) = \sum_{k=0}^{N-1} (-1)^{k} \frac{\sigma_{g \cdot J^{k}}^{1} \cdot \sigma_{J}^{N-k-1}}{\sigma_{J}^{N}}$$

where σ_{q,J^k}^1 and σ_J^l can be found from Proposition 2.

3.3. If not all the zeroes of f are simple, f can be perturbed. We consider f - w, where w is a small complex *n*-tuple. For generic values of w, the Jacobian J does not vanish at the zeroes of f - w. Let $z^{(1)}(w), \ldots, z^{(N)}(w)$ be the elements of V(f - w). In [6], Section 6.2, Tsikh showed that the sum

$$\phi(w) = \sum_{\nu=1}^{N} \frac{g(z^{(\nu)}(w))}{J(z^{(\nu)}(w))}$$

is a holomorphic function in w on a small neighbourhood of 0. Then $\phi(0)$ is the sum of the local residues of g at the zeroes of f. As a result, we obtain the following theorem.

ALESSANDRO PEROTTI

Theorem 2. The global residue $\operatorname{Res}_f(g)$ of any $g \in \mathbb{C}[z]$ with respect to f is equal to $\psi(0)$, where $\psi(w)$ is the holomorphic function given by

$$\psi(w) = \sum_{k=0}^{N-1} (-1)^k \frac{\mathrm{LRes}_{f-w}(g \cdot J^k) \cdot \sigma_J^{N-k-1}(w)}{\sigma_J^N(w)}$$

Here $\sigma_J^l(w)$ are the elementary symmetric functions in $J(z^{(1)}(w)), \ldots, J(z^{(N)}(w)),$ which can be found from the logarithmic residues $\operatorname{LRes}_{f-w}(J^l), l = 1, \ldots, N.$

4. Applications

4.1. The global residues and the total logarithmic residues have well known applications. They give a method for eliminating variables which does not use resultants. For any i = 1, ..., n, from LRes_f a univariate polynomial in $I(f) \cap \mathbb{C}[z_i]$ of degree N can be computed. It preserves multiplicities of the zeroes of f (for this method, see [4] Section 21).

From Res_f a membership criterion for the ideal I(f) can be deduced. In [8], Tsikh applied Lasker-Noether Theorem and got the following:

 $g \in I(f) \Leftrightarrow \operatorname{Res}_f(g(\zeta)H(z,\zeta)) = 0$, where $H(z,\zeta)$ is a Hefer determinant of f

Remark. A polynomial Hefer determinant of f can be computed from the Hefer expansions

$$f_{i}(\zeta) - f_{i}(z) = \sum_{j} P_{ij}(z,\zeta)(\zeta_{j} - z_{j})$$

where $P_{ij}(z,\zeta) = \frac{f_{i}(\zeta_{1}, \dots, \zeta_{j}, z_{j+1}, \dots, z_{n}) - f_{i}(\zeta_{1}, \dots, \zeta_{j-1}, z_{j}, \dots, z_{n})}{\zeta_{i} - z_{i}}$

Note that from $P_{ij}(z,\zeta)$ and $P_{ij}(\zeta,z)$ we can get a Hefer determinant which is symmetric in z and ζ .

4.2. Let $g, h \in \mathbf{C}[z]$ and $g_0(\zeta) = \operatorname{Res}_f(g(z)H(z,\zeta)), h_0(\zeta) = \operatorname{Res}_f(h(z)H(z,\zeta))$. From the membership criterion above we get that $g_0 = h_0$ if and only if the difference $g - h \in I(f)$, that is g and h define the same class in the N-dimensional quotient space $\mathbf{C}[z]/I(f)$.

If we apply the transformation formula for the global residue (see [8]) to the Hefer expansion of f, we get, for any polynomial p, $\operatorname{Res}_{z-\zeta} p(z) = \operatorname{Res}_{f-f(\zeta)}(p(z)H(z,\zeta))$. It follows that for any $a \in V(f)$, $\operatorname{Res}_f(p(z)H(z,a)) = p(a)$. In particular, we get $\operatorname{Res}_f H(z,a) = 1$.

From this we can deduce that $\operatorname{Res}_f(g_0(z)H(z,\zeta)) = \operatorname{Res}_f(g(z)H(z,\zeta)) = g_0(\zeta)$. For simplicity, assume that the zeroes of f are simple. Then

$$\operatorname{Res}_{f}(g_{0}(z)H(z,\zeta)) = \sum_{\nu} \frac{g_{0}(z^{\nu})H(z^{\nu},\zeta)}{J(z^{\nu})}$$
$$= \sum_{\nu,\mu} \frac{g(z^{\mu})H(z^{\nu},z^{\mu})H(z^{\nu},\zeta)}{J(z^{\nu})J(z^{\mu})}$$
$$= \sum_{\mu} \frac{g(z^{\mu})}{J(z^{\mu})}\operatorname{Res}_{f}(H(z,z^{\mu})H(z,\zeta))$$
$$= \operatorname{Res}_{f}(g(z)H(z,\zeta)) = g_{0}(\zeta).$$

As a result, we get the following proposition.

Proposition 3. Let $g \in \mathbf{C}[z]$, $g_0(\zeta) = \operatorname{Res}_f(g(z)H(z,\zeta))$. Then $g-g_0 \in I(f)$, that is g_0 represents g in the quotient space $\mathbf{C}[z]/I(f)$. In particular, $\operatorname{Res}_f g = \operatorname{Res}_f g_0$.

Note added in proof. The paper [E. Cattani, A. Dickenstein, B. Sturmfels, Computing multidimensional residues, Progress in Mathematics, Vol. 143, Birkhäuser Verlag, Basel, 1996, pp. 135–164] contains interesting relations between global residues and Gröbner bases.

References

- L.A. Aizenberg, On a formula for the generalized multidimensional logarithmic residue and solutions of systems of nonlinear equations, Dokl. Akad. Nauk SSSR 234 (1977), 505–508; English transl., Soviet Math. Dokl. 18 (1977), 691–695.
- L.A. Aizenbergand A.K. Tsikh, Application of the multidimensional logarithmic residue to systems of nonlinear algebraic equations, Sibirsk. Mat. Zh. 20 (1979), 699–707; English transl., Siberian Math. J. 20 (1979), 485-491.
- L.A. Aizenberg, A.K. Tsikh and A.P. Yuzhakov, *Multidimensional Residues and Applications*, Encyclopaedia of Math.Sc. 8, Springer-Verlag, Berlin, Heidelberg, New-York, 1990, pp. 1–58.
- L.A. Aizenbergand A.P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, "Nauka", Novosibirsk, 1979; English transl., Translations of Mathematical Monographs, 58, Amer. Math. Soc., Providence, 1983.
- 5. P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, Wiley, New York, Chichester, 1978.
- A.K. Tsikh, Multidimensional Residues and Their Applications, "Nauka", Novosibirsk, 1988; English transl., Translations of Mathematical Monographs, 103, Amer. Math. Soc., Providence, 1992.
- A.K. Tsikh., Residues with respect to holomorphic mappings and their applications, Krasnoyarsk Univ. Press, Krasnoyarsk, 1986. (Russian)
- A.K. Tsikh and A.P. Yuzhakov, Properties of the total sum of residues with respect to a polynomial map and applications of them, Sibirsk. Mat. Zh. 25 (1984), 207–213; English transl., Siberian Math. J. 25 (1984), 677–682.
- A.P. Yuzhakov, On the computation of the total sum of residues relative to a polynomial mapping in Cⁿ, Dokl. Akad. Nauk SSSR 275 (1984), 817–820; English transl., Soviet Math. Dokl. 29 (1984), 321–324.

Dipartimento di Matematica Università di Milano Via Saldini 50 I-20133 Milano ITALY

E-mail address: perotti@vmimat.mat.unimi.it